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Abstract

The energy landscape picture is a central tool to study many-body systems. In particular, the

energy landscapes of glass-forming liquids, jammed packings, constraint satisfaction problems,

or neural networks contain a plethora of minima corresponding to competing states. Due to

their complexity, these landscapes resist analytical treatment and must be studied numerically.

We focus on jammed soft spheres, a paradigmatic model of glasses and granulars, to expose the

limitations of standard numerical methods commonly used since the 1980s in the study of liquids,

glasses and jammed systems.

Using this numerical approach, we provide unequivocal evidence that optimizers widely used

in computational studies destroy all semblance of the true landscape geometry, even in moder-

ately low dimensions. Employing a range of geometric indicators, both low- and high-dimensional,

we show that earlier claims on the fractality of basins of attraction of minima originated from the

use of inadequate mapping strategies. In reality, the basins of attraction of soft sphere packings

are smooth structures with well-defined length scales
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1 | Prelude

All stable processes we shall predict. All unstable processes we shall control.

— John von Neumann

Abroad class of systems across the sciences arewell described by properties a high-dimensional

energy (or cost) functionwith an intractable number of minima, ranging from the condensedmat-

ter systems such as glasses[1–3], to biomolecular processes such as the folding of proteins[1, 4], to

modernmachine learning architectures. In each of these domains, the energy landscape paradigm

provides a unifying language. Glasses are understood in terms of relaxation slowed amongst a

number of metastable states on a rough landscape (Fig. 1.1), proteins fold by descending in a fun-

neled landscape towards the native states, neural networks are trained by descending on a loss

landscape whose structure and geometry determine both learning dynamics and generalization

[5–12].

The simplest relaxation process to define in an energy or cost function is steepest descent.

In the context of energy functions in statistical physics, this choice of dynamics is particularly

meaningful, as it describes the dynamics followed by a system after a sudden quench to zero

temperature. This perspective admits a dynamical-systems formulation, where steepest descent

defines a deterministic mapping from initial conditions to asymptotic minima. Within this frame-

work, one may define the basin of attraction associated with a minimum as the set of all initial

configurations whose trajectories under steepest descent converge to that minima. The statisti-
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Figure 1.1: A schematic rugged energy landscape with a multitude of energy minima, maxima, and
saddles. Arrows denote some of the possible relaxation pathways. Figure credit: Chiara Cammarota,
Simons Collaboration on Cracking the Glass Problem [13].

cal and geometric properties of these high dimensional basins play a fundamental role in under-

standing a large variety of systems. For example the volumes of these basins have been evoked to

understand models of associative memory[14, 15], as a way to estimate configurational entropy

in jammed systems[16–18] and glasses and as a measure of stability beyond the traditional linear

stability paradigm [19]. Moreover the volume of the sync basin on a ring of kuramoto oscillators

has been a topic of rich debate in the dynamical systems community [20–22].

In this thesis we focus on a commonmodel of soft sphere packings [16–18, 23–36] an archety-

pal model of glasses and granulars. We emphasize that this model, and more broadly glassy land-

scapes in general have deeper connections to other fields, notably constraint satisfaction [37–

39], machine learning [10, 40–47] and ecology[48–52]. The approaches we use in this thesis
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also extend beyond glassy landscapes to any problem that involve a study of a high-dimensional

energy-like function with many minima, from biological molecules [1, 53] to string theory [54,

55].

1.1 A dynamical systems perspective

We start with a standard analysis that arises across multiple fields, concerning a differential equa-

tion of the form
d𝒙
d𝑡

= 𝒇 (𝒙) (1.1)

where 𝒙 (𝑡) ∈ R𝑁 is the state vector, a complete specification of the system at time 𝑡—and 𝒇 :

R𝑁 → R𝑁 is a vector field that governs the dynamics. The space R𝑁 of all possible states is

called the phase space, and the vector field 𝒇 defines a flow: each point 𝒙 in phase space has an

associated velocity 𝒇 (𝒙) that determines how the system evolves from that state.

For many systems, trajectories in phase space often converge toward invariant regions, called

attractors, regions, once entered, the system cannot leave. More formally, an invariant region 𝐴

is called an attractor if all trajectories starting sufficiently close to it are drawn back: formally, for

initial conditions 𝒙 (0) = 𝒙0 + 𝝐 with 𝒙0 ∈ 𝐴 and 𝝐 small, we have lim𝑡→∞ 𝑑 (𝒙 (𝑡), 𝐴) = 0, where

𝑑 denotes a suitable distance metric. For example, when 𝐴 is a single point, the 𝐿2 norm suffices.

To determine stability, we analyze how small perturbations 𝝐 from a fixed point evolve. The

traditional linear stability analysis proceeds as follows. We expand the perturbation in the differ-

ential equation, giving us
d𝝐
d𝑡

= 𝐽 (𝒙∗)𝝐, 𝐽𝑖 𝑗 (𝒙∗) =
𝜕

𝜕𝑥 𝑗
𝑓𝑖 (𝑥∗) (1.2)

where 𝐽 (𝒙) is the Jacobianmatrix at 𝒙 . Let 𝒗𝑖 be eigenvectors of 𝐽 (𝒙∗)with eigenvalues 𝜆𝑖 . Expand

the perturbation as

𝝐 =
∑︁
𝑖

𝒗𝑖𝑥
′
𝑖 =𝑉𝒙

′ (1.3)
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where 𝑉 = [𝒗1 𝒗2 · · · ] and 𝒙′ = (𝑥′1, 𝑥′2, . . .)𝑇 . The linearized equation becomes

d𝑥′𝑖
d𝑡

= 𝜆𝑖𝑥
′
𝑖 (1.4)

with decoupled solutions: 𝑥′𝑖 (𝑡) = 𝑥′𝑖 (0)𝑒𝜆𝑖𝑡 . In the case that all the real parts of 𝜆𝑖 are negative,

we have an attractor. The slowest timescale, |1/Re(𝜆min) |, where 𝜆min is the eigenvalue with the

smallest (in magnitude) real part, determines the rate of convergence to the attractor.

This approach constitutes a local stability analysis—local because it is valid only for infinitesi-

mally small perturbations 𝝐 from the fixed point, where the linear approximation in Eq. 1.2 holds.

Traditional textbook analyses [56, 57] focus heavily on such linear stability analyses, which are

widely employed across scientific disciplines.1.

However, the question of global stability remains: how does the system behave under finite

perturbations, where linearization breaks down? A natural framework for addressing this ques-

tion is the basin of attraction 𝐵(𝐴)—the set of all initial conditions in phase space that asymp-

totically converge to attractor 𝐴 as 𝑡 → ∞. In this thesis, we focus on two complementary

properties of basins: their geometric structure (Chapter 4) and their volume (Chapter 6). These

concepts have deep roots in the dynamical systems literature. We first review how basins are

characterized in the dynamical systems literature with a historical perspective on developments,

while noting that the approaches we use are different in this thesis.

1.1.1 On structure

The preceding analysis raises a practical question: in real systems, initial conditions are never

known exactly. Given some measurement uncertainty, how confident can we be about which

attractor the system will reach? A seminal approach to solve this problem, developed by Grebogi,

Ott, Yorke, and collaborators [58–61], characterizes the fractality of basin boundaries to measure
1Eq. 1.4 can be interpreted as 𝑁 independent overdamped harmonic oscillators, where the damping term fully

dominates any acceleration, following our usual strategy of starting by treating everything as a harmonic oscillator.
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final state uncertainty. To illustrate their viewpoint, consider a 2D state space partitioned into

two different basins as shown in Fig. 1.2. Given an initial condition known only to within some

uncertainty radius 𝜖 , how confident can we be about which attractor the system will reach? If

the initial condition lies far from any boundary, the outcome is certain regardless of 𝜖 . However,

if a basin boundary passes through the uncertainty disk, the final state becomes ambiguous as

small perturbations could lead to qualitatively different outcomes. This motivates a quantitative

measure of final state uncertainty through the following procedure

1. Sample 𝑁 points at random in the phase space.

2. For each point, Determine whether a basin boundary intersects in a disk of size 𝜖 .

3. Classify the points where intersections are found as uncertain and compute the fraction of

“uncertain” states 𝑓 (𝜖)

The scaling behaviour of 𝑓 (𝜖) reveals the structure of boundaries. typically [61]

𝑓 (𝜖) ∼ 𝜖𝛼 , (1.5)

Here 𝛼 is called the uncertainty exponent. Intuitively, 𝑓 (𝜖) measures the fraction of phase space

where small uncertainties in initial conditions lead to unpredictable outcomes, points near basin

boundaries where perturbations of size 𝜖 could push the trajectory into a different basin.

The uncertainty exponent is related to the fractal dimension of basin boundaries through [61]

𝛼 = 𝐷 − 𝑑, (1.6)

where 𝐷 is the dimension of phase space and 𝑑 is the box-counting dimension of the basin bound-

aries. The box-counting dimension measures how the boundary fills space: tile space with boxes

of side length 𝜖 and count the minimum number 𝑁 (𝜖) needed to cover the boundary. The box-
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counting dimension 𝑑 is defined by

𝑑 = − lim
𝜖→0

log (𝑁 (𝜖))
log (𝜖) (1.7)

For smooth boundaries, 𝑑 = 𝐷 − 1 and 𝛼 = 1. Fractal boundaries have 𝑑 > 𝐷 − 1, yielding

𝛼 < 1 i.e they fill more of phase space than a smooth boundary.

A B

ε

Figure 1.2: Illustration of the uncertainty exponent algorithm. Points are sampled uniformly in phase
space and classified as uncertain if a disk of radius 𝜀 centered at the point intersects a basin boundary.
Solid circles indicate uncertain points (disk crosses boundary); the dashed circle shows a certain point
(disk remains within basin 𝐴).

This geometric approach faces severe computational challenges in high dimensions because

the cost to determine whether a disk intersects a boundary scales as 𝑂 (𝑁𝐷), making direct ap-

plication prohibitively expensive as 𝐷 increases. While optimizations exist, the vast majority of

systems studied by this method in the dynamical systems community have state spaces of fewer

than ten dimensions, primarily damped oscillators [62] and ecological competition models [63,

64]. In high dimensions, we address this scaling by using a related measure described in Chap-

ter 4.
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1.1.2 On volume

Fractal boundaries are onemeasure of stability, however a basin with smooth boundaries as stable

if it has occupies a comparative small volume in phase space. The importance of basin volumes

for predicting convergence was first identified by Wiley, Strogatz, and Girvan [20] in the context

of Kuramoto oscillators on a ring, where the synchronized state competes with “twisted” states

characterized by a winding number 𝑞. Initial investigations using naive sampling suggested that

the synchronization basin scales as 𝑒−𝑘𝑞2 [20], whereas a semi-analytical treatment in hypercubic

shells proposed an 𝑒−𝑘 |𝑞 | scaling [65]. This discrepancy was resolved when Zhang and Strogatz

demonstrated that the volume of the synchronization basins concentrates in “tentacles” extend-

ing through phase space [19], a geometric feature that independently confirms similar results ob-

served in jammed sphere packings [27]. The originally proposed 𝑒−𝑘𝑞2 scaling was subsequently

verified analytically by Groisman [66]. a measure based on the basinvolume, basin stability was

formally defined in [19] as the relative volume of an attractor’s basin compared to that of the full

phase space. In lines of work by Kurths and collaborators, basin stability has since been applied

to characterize the robustness of power grids [67, 68], analyze climate tipping cascades [69], and

investigate dynamics in neural networks [70]. The standard numerical procedure utilized in these

works relies on a full sampling of the phase space using a naive monte carlo method proceeding

as follows:

1. Sample 𝑁 initial conditions from a specified region of interest, 𝑄 , in the 𝐷-dimensional

phase space according to a distribution 𝜌 (typically uniform random).

2. For each sampled initial condition 𝒙0, numerically integrate the system dynamics forward

in time until reaching the asymptotic state 𝒙∗ (after time 𝑡∗).

3. Classify each trajectory into one of 𝑘 attractors based on the final state.

4. Estimate the basin stability estimate for each attractor 𝑖 as 𝑆𝐵 (A𝑖) = 𝑁𝑖/𝑁 , where 𝑁𝑖 is the
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number of initial conditions converging to attractor 𝑖 . This ratio represents the estimated

volume fraction of that basin in the region of interest.‘’

5. We can also estimate the volume of the basin of attraction 𝑣 (A𝑖) = 𝑉tot𝑆𝐵 (A𝑖) where 𝑉tot

is the the total volume of phase space

We note that this method is the same as the “first” example encountered in introductory

Monte Carlo courses: estimating 𝜋 by sampling uniformly in a square and counting the fraction

of points falling inside an inscribed circle (Fig. 1.3). For a circular basin of radius 𝑟 inscribed in a

phase space of side 2𝑟 , the basin stability estimate is 𝑆𝐵 (Acircle) = 𝜋/4 ≈ 0.785, and the estimated

“volume” is 𝑣circle = 4𝑟 2 · (𝜋/4) = 𝜋𝑟 2.

Figure 1.3: Monte Carlo estimation of a circular basin’s “volume” and basin stability. Points are sampled
uniformly in the square; the fraction falling inside the circle (blue) estimates the ratio of areas.

It is important to note, however, that this approach is computationally efficient only when

the basin occupies a significant fraction of the sampling region. We show this limitation, by

looking at estimating the volume of the volume fraction occupied by a hypersphere inscribed

in a hypercube vanishes rapidly with dimension. In 𝐷 dimensions, a hypersphere of radius 𝑟
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inscribed in a hypercube of side 2𝑟 has volume ratio

𝑆
(𝐷)
𝐵

=
𝜋𝐷/2

2𝐷 Γ(𝐷/2 + 1)
, (1.8)

which decays approximately exponentially with dimension 𝐷 . This ratio, which equals 𝜋/4 ≈

0.785 in two dimensions, drops to 𝜋/6 ≈ 0.524 in three dimensions, ∼ 10−2 in ten dimensions,

and becomes astronomically small thereafter (e.g.,∼ 10−70 for𝐷 = 100). so if wewere to randomly

sample inside our hypercube, we would never land within our hypersphere at large 𝐷

This limitation renders naive sampling infeasible for calculating volumes when basins occupy

an extremely small fraction of phase space. For Kuramoto oscillators on a ring, verifying the

𝑒−𝑘𝑞
2 scaling at large winding number 𝑞 becomes exceedingly difficult as these basins occupy a

vanishing fraction of phase space [20, 21]. The same problem appears in the context of soft sphere

packings, the focus of this thesis: the number of attractors grows exponentially with dimension

[71], and every basin occupies such a small portion of phase space that the probability of landing

in any minimum twice under uniform sampling approaches zero. An alternative approach to

calculating basin volumes was developed by Frenkel and collaborators [16–18, 31] in this context.

We use this approach in this thesis to calculate basin volumes; we discuss it in Sec. 1.2.3 and

present it in detail with examples in Chapter 5.

1.2 Basins on an energy landscape

The inherent structure formalism, introduced by Stillinger and Weber [72], provides the founda-

tional framework for connecting energy landscape structure to thermodynamics: steepest descent

maps every configuration to a local minimum, partitioning configuration space into basins. To

connect the ideas of structure discussed in Section 1.1.1 and volumes in Section 1.2.3 to the statis-

tical physics of soft sphere packings, we formally specialize the dynamical systems framework of
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Section 1.1 to the potential energy of a classical many-body system. Consider a classical system

of 𝑁 particles in a volume𝑉 in dimension 𝑑 , described by the position vector𝑿 = (𝒙1, 𝒙2, . . . , 𝒙𝑁 )

in the configuration space Ω (called a phase space in the context of Section 1.1). The specific form

of Ω depends on the boundary conditions: for example, for open boundaries Ω = R𝑁𝑑 , while for

periodic boundaries in a box of side 𝐿, Ω = (𝐿T)𝑁𝑑 where T = R/Z is the unit torus. The poten-

tial energy is a function 𝐸 : Ω → R that has a well-defined minimum. The topography of this

surface is typically rugged[72, 73], characterized by a multiplicity of local minima. Although we

consider only classical classical many-body systems here, high dimensional energy or energy-like

functions with the same properties as 𝐸 (𝑿 ) come up in a variety of fields such as ecology[74] or

machine learning[75].

In the language of Eq. (1.1), the flow 𝒇 (𝑿 ) is determined by the negative gradient of the

potential energy surface. The steepest descent equation

d𝑿
d𝑡

= −∇𝐸 (𝑿 ) (1.9)

determines a unique mapping: as 𝑡 → ∞, any configuration 𝑿 (𝑡) starting at 𝑿 (0) converges to

a specific local minimum, or inherent structure, denoted by 𝑿𝐼𝑆 . It is also the fastest “quench”

that does not allow for equilibration or barrier crossing. Here, 𝑡 is a fictitious time coordinate

representing the descent. The fixed points of this dynamical system are the stationary points

of the potential energy surface where ∇𝐸 (𝑿 ) = 0. Specifically, we are interested in the stable

fixed points (local minima), which correspond to the attractors discussed in Section 1.1. We can

therefore formally define the basin of attraction associated with a specific minimum 𝛼 , denoted

as B𝛼 , as the set of all initial configurations in the phase space that map to𝑿𝛼
𝐼𝑆
under the gradient

flow relaxation path:

B𝛼 =

{
𝑿 ∈ Ω | lim

𝑡→∞
𝑿 (𝑡) = 𝑿𝛼

𝐼𝑆

}
. (1.10)
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The gradient flow partitions the entire configuration space, up to a set of measure zero, into

disjoint basins of attraction:

Ω =

(⋃
𝛼

B𝛼

)
∪ N . (1.11)

The zero-measure setN consists of basin boundaries (separatrices) and unstable fixed points such

as saddles and maxima.

To illustrate the utility of this formulation, we briefly show how the basin picture provides

a framework to obtain physics. (1.11) means that the total volume of configuration space 𝑉tot

becomes

𝑉tot =

𝑁𝑚∑︁
𝛼=1

𝑣𝛼 . (1.12)

given that the mean volume is ⟨𝑣⟩ = 1
𝑁𝑚
𝑣𝛼 , we get the number of minima as

𝑁𝑚 =
𝑉tot

⟨𝑣⟩ , (1.13)

We can define a Boltzmann-like entropy discussed in the packing context [17, 76],

𝑆𝐵 = ln(𝑁𝑚) − ln(𝑁 !) . (1.14)

Alternatively, we define a Gibbs-like configurational entropy based on the probability of occu-

pancy 𝑝𝛼 = 𝑣𝛼/𝑉tot [17]:

𝑆𝐺 = −
𝑁𝑚∑︁
𝛼=1

𝑝𝛼 ln(𝑝𝛼 ) − ln(𝑁 !). (1.15)

Under the Edwards hypothesis [76], which assumes all valid packings are equiprobable, the Gibbs

and Boltzmann entropies become equivalent. This equivalence was used to test the hypothesis

for soft sphere packings in 2𝑑 [31].
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1.2.1 On methods

While the steepest descent equation (Eq. 1.9) provides a mathematically precise definition of

basins, solving this ODE numerically is computationally demanding. The computational expense

of accurate ODE integration led to the widespread adoption of optimizer proxies—algorithms

designed for rapid energy minimization rather than faithful trajectory integration. We note that

while Stillinger’s original work on liquids used ODE solvers well suited to the problem [72, 77],

later work in the 1980s started a shift to optimizer proxies [78].

The problemwith this shift is that most optimizers do not solve the steepest descent ODE, and

optimization generates trajectories with different properties than solving the ODE. Despite these

differences, modern jamming and glassy literature conflates solving steepest descent with solving

an optimization problem, neglecting the differences that arise [36, 79–81]. Even when using

methods that do solve the steepest descent ODE, the optimization framework persists, leading

to a situation where for soft sphere packings of any significant size, researchers have explictly

mentioned being in regimes where the inherent structure was sensitive to solver parameters [79],

and finding the inherent structure has also been described as impossible above system sizes of 64

particles in 2𝑑 in 2025 [80].

We reject this framing in this thesis. In Chapter 2, we review the classes of numerical methods

used in the literature, discuss the numerical aspects relevant to solving this problem correctly,

and present a tool that finds the correct inherent structure at system sizes the community cares

about, upto at least 𝑁 = 1024 in 2𝑑 2. In Chapter 3, we examine the consequences of optimizer

use for basin assignment; in Chapter 4, we examine the consequences for basin geometry; and in

Chapter 6, we examine the consequences for basin volumes.
2While this thesis shows results for 𝑁 = 1024, we have gone upto 4096
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1.2.2 On structure

In Section 1.1.1, we discussed how uncertainty in initial conditions can lead to unpredictable final

states, and how this phenomenon connects to the fractality of basin boundaries. In that frame-

work we showed how the dynamical systems community tackled how to quantify arbitrarily

small perturbations to initial conditions redirecting trajectories to different attractors.

Recent work has documented that numerical choices and slight perturbations significantly

affect which minimum is obtained [79, 81]. These observations have been interpreted as suggest-

ing that the landscape itself is “chaotic” [81], such that small perturbations to initial conditions

lead to qualitatively different final states. However, no quantification of this phenomenon exists

in the literature. Fractality has been discussed in several contexts in the potential energy land-

scape literature: the fractal organization of basins [33, 52, 82], the fractal structure of relaxation

paths [29, 35, 83–85], and fractal basin boundaries [23, 28]. We emphasize that these distinct

notions of fractality must be clearly separated.

Inspired by chaotic dynamical systems [56, 59, 86–88], it has further been suggested that the

basins of attraction themselves may be fractal in neural networks [89, 90], constraint satisfaction

problems [91, 92] and energy landscapes at large [23, 28, 36, 93–96].

In Chapter 4, we address claims of chaotic behavior and fractal boundaries, and show where

the observed sensitivity to initial conditions originates. We develop a tool analogous to the uncer-

tainty exponent of Grebogi, Ott, Yorke and collaborators [59, 61] that remains computationally

tractable in high dimensions and can quantify both sensitivity and fractality to address this claim.

1.2.3 On volume

In Section 1.1.2, we showed that naive Monte Carlo sampling becomes infeasible for soft sphere

packings, where exponentially manyminima ensure that each basin occupies a vanishing fraction

of configuration space. To calculate basin volumes for jammed systems, researchers developed
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an approach that addresses the infeasibility of the naive sampling method described in 1.1.2. This

line of work began with Xu [16] and was further improved by Asenjo [17] and Martiniani [18,

30].

The volume can be written as:

𝑣𝛼 =

∫
Ω
𝑑𝑿 1B𝛼 (𝑿 ) (1.16)

where 1B𝛼 (𝑿 ) is an indicator function that equals 1 inside the basin and 0 outside. Finding the

volume is thus equivalent to estimating the normalization constant of a uniform distribution with

unknown support B𝛼 .

In the jamming literature, this problem is recast in statistical mechanical terms. The volume

(normalization constant) is treated as the partition function of an infinite potential well 𝑈𝛼 (𝑿 )

that equals 0 inside the basin and∞ outside, at temperature 1/𝛽 . The indicator function becomes

1B𝛼 (𝑿 ) = exp (−𝛽𝑈𝛼 (𝑿 )), and the negative log of the volume becomes a free energy. This

reformulation allows computational chemistry methods developed for free-energy calculations

to be applied to calculate basin volumes.

The algorithm works as follows. We attach a harmonic oscillator with spring constant 𝑘 to

the attractor 𝑿𝛼
𝐼𝑆
within the well, giving the partition function:

𝑍𝛼 (𝑘) =
∫
Ω
𝑑𝑿 exp (−𝑈𝛼 (𝑿 ) − 𝐻𝛼 (𝑿 )) (1.17)

where 𝐻𝛼 (𝑿 ) = 𝑘
��𝑿 − 𝑿𝛼

𝐼𝑆

��2 /2. The free energy 𝐹𝛼 (𝑘) = − ln(𝑍𝛼 (𝑘)) equals the negative log

volume. In the limit 𝑘 →∞, the partition function and free energy are known analytically, while

at 𝑘 = 0, 𝐹𝛼 (0) = − ln(𝑣𝛼 ). An estimator for the negative log volume is:

𝐹𝛼 (0) = 𝐹 (𝑘 →∞) + Δ𝐹 (𝑘 = 0, 𝑘 →∞) (1.18)
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where Δ𝐹 (𝑘 = 0, 𝑘 →∞) estimates the free energy difference

Δ𝐹 (𝑘 = 0, 𝑘 →∞) = 𝐹 (𝑘 = 0) − 𝐹 (𝑘 →∞) . (1.19)

Various free energy difference estimators exist, including thermodynamic integration (TI) [97],

MBAR [98], and the stepping stone estimator [99], which use random samples generated at sev-

eral 𝑘 values, typically obtained through MCMC sampling. The rate-limiting step is determining

whether each point lies inside or outside the basin, which requires solving the steepest descent

ODE at every MCMC step.

Importantly, the basin volumes calculated in these works do not correspond to the true basins

of the steepest descent ODE due to the computational cost of solving it exactly. Instead, optimizer

proxies such as FIRE[100], L-BFGS[101], and Conjugate Gradient Descent [102–105] are used for

speed. This follows standard practice in potential energy landscape studies since the late 1980s

[106]. A central theme of this thesis is to examine the consequences of these choices in the study

of soft sphere packings

1.3 Thesis Organization

This thesis is structured as follows:

Chapter 2 establishes the methodological foundation by reviewing numerical aspects of en-

ergy landscapes and methods for energy minimization and steepest descent integration used in

studies of jamming and glasses. Beyond serving the thesis, this chapter provides a comprehensive

overview of tools and nuances for descending the landscape that is aimed at researchers studying

potential energy landscapes in physics and chemistry. We believe the viewpoint it provides does

not currently exist in the field. The chapter includes benchmarking that yields a reliable method

for solving the steepest descent ODE (CVODE), which we employ in subsequent chapters.
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Chapter 3 demonstrates that commonly used optimizers fail catastrophically at basin identifi-

cation, with accuracy decaying exponentiallywith system size𝑁 . For systems of𝑁 ≥ 64 particles,

optimizer accuracy drops to near zero, and we visualize this failure through configuration-space

slices showing basin “scrambling.” We further show that optimizer errors systematically bias

estimates of minimum energies and the jamming transition density.

Chapter 4 characterizes the geometric structure of basins using multiple complementary ap-

proaches: line intersections, box-counting dimension, and survival probability under perturba-

tions. We demonstrate that the apparent fractality can emerge as an artifact of optimizer use

rather than an intrinsic property of the energy landscape.

Chapter 5 describes the algorithmic approach for measuring basin volumes in high dimen-

sions, where naive Monte Carlo sampling becomes infeasible. We introduce parallel tempering

with harmonic spring biasing to sample different radial regions within a basin, and explain how

MBAR (Multistate Bennett Acceptance Ratio) enables estimation of basin volumes from these

samples.

Chapter 6 applies the volume measurement methodology to reveal systematic biases from

optimizer use. We show that optimizers systematically overestimate basin volumes by incorrectly

assigning distant points to basins, with accuracy decaying exponentially with distance from the

minimum. These inaccuracies appear precisely in the “tentacle” regions wheremost basin volume

concentrates.

We conclude with Chapter 7, which discusses open questions and potential avenues for future

research, including extensions to other energy landscapes and systems.

A significant portion of this thesis concerns numerical methods and their consequences for

understanding physics. Recognizing that readers may have different interests, we organize the

chapters into two categories. Methods chapters (Chapter 2 and Chapter 5) focus on numerical

techniques for basin identification and volume calculation, including solver comparisons, con-

vergence criteria, and sampling algorithms. Physics chapters (Chapter 3, Chapter 4, Chapter 6)
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present results on basin properties.

Readers primarily interested in physical results may proceed directly to Chapter 3 after this

introduction, consulting Chapter 2 only for context on the Hertzian disk model and solver com-

parisons. The geometry results in Chapter 4 can be read independently of the volume chapters.

For volume results, Chapter 6 provides self-contained context, though readers seeking a deeper

understanding of the sampling methodology should first consult Chapter 5. Readers interested

in reproducing or extending this work should read the relevant methods chapter in full.
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2 | Model and Methods

Stiff equations are equations where certain implicit methods, in particular BDF,

perform better, usually tremendously better, than explicit ones.
— Ernst Hairer & Gerhard Wanner, Solving Ordinary Differential Equations II

2.1 Introduction

This chapter provides the methodological foundation for the thesis. The numerical details de-

scribed here were crucial to the results that follow, and we believe that a clear understanding of

these tools would benefit researchers studying energy landscapes.

We begin by reviewing the classes of numerical methods commonly used in energy landscape

studies, highlightingmodificationsmade in the field: gradient descent (Section 2.3.1), momentum-

based methods such as FIRE (Section 2.3.2), and quasi-Newton methods including L-BFGS (Sec-

tion 2.3.3). We then introduce implicit ODE solvers based on backward differentiation formulas

(Section 2.4), explaining why they are essential for the stiff problems encountered in jammed

packings. After describing the Hertzian disk model that serves as our testbed (Section 2.2), we

present systematic benchmarks comparing ODE solvers (Section 2.5), justifying our choice of

CVODE as the reference method throughout this thesis.
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2.2 Model

Figure 2.1: Jammed packings of 𝑁 = 512 bidisperse Hertzian disks in two dimensions. Left: at 𝜙 = 0.845,
blue particles form the mechanically stable backbone while orange particles are rattlers—particles with
insufficient contacts to be part of the rigid structure. Right: at 𝜙 = 0.9, transparency reveals particle
overlaps as darker regions where disks interpenetrate; All blue particles have overlaps, although overlaps
are more clearly visible at 𝜙 = 0.9. Both packings are confined to periodic square boxes and interact via
the repulsive contact potential (Eq. 2.1).

Throughout this thesis, we consider two-dimensional polydisperse collections of 𝑁 particles

confined to periodic square boxes of sidelength 𝐿. The particles interact via a Hertzian repulsive

potential,

𝑉𝑖 𝑗 (𝑟𝑖 𝑗 ) =
(
1 −

𝑟𝑖 𝑗

𝑅𝑖 + 𝑅 𝑗

)5/2
1

(
𝑟 ≤ 𝑅𝑖 + 𝑅 𝑗

)
, (2.1)

where 𝑅𝑖 is the radius of particle 𝑖 , 𝑟𝑖 𝑗 is the metric distance between the centers of particles 𝑖 and

𝑗 , and 1 is an indicator function that restricts the interaction to overlapping particles. The total

energy is then 𝐸 =
∑
𝑖< 𝑗 𝑉𝑖 𝑗 .

The exponent 5/2 originates from Hertzian contact mechanics for three-dimensional elastic
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spheres [107]. We adopt it in 2𝑑 because the harmonic potential, with the power set to 2 instead

of 5/2, more commonly used for soft disks in 2𝑑 , has a discontinuous Hessian at the onset of

contact. This may produce artifacts that do not generalize to other potentials.

The radii are drawn from a bidisperse distribution to prevent crystallization: half the particles

have radii sampled from a positive-normal distributionwithmean 𝜇𝑠 = 1.0 and standard deviation

𝜎𝑠 = 0.05, while the other half are drawn with 𝜇ℓ = 1.4 and 𝜎ℓ = 0.07. This choice ensures

that particles do not crystallize and that distinct minima of the energy are not connected by

permutation symmetry [16, 108].

Due to periodic boundary conditions, the energy is invariant under global translations in

𝑑 = 2 directions, reducing the number of independent degrees of freedom from 𝑁𝑑 to (𝑁 − 1)𝑑 .

With these conventions, the packing fraction is defined as

𝜙 =
𝜋

∑𝑁
𝑖=1 𝑅

2
𝑖

𝐿2 . (2.2)

This system undergoes a jamming transition at 𝜙 𝐽 ≈ 0.84 [109]. As 𝜙 decreases towards 𝜙 𝐽 , an

increasing fraction of generic configurations can be relaxed to states with 𝐸 = 0, corresponding

to unjammed or liquid configurations in which all particle overlaps can be removed at no energy

cost. For 𝜙 > 𝜙 𝐽 , most minima of the energy are jammed: the particles form a mechanically stable

backbone in which displacing any backbone particle necessarily increases the energy. A small

number of particles, called rattlers, remain free to move in certain directions without affecting

the energy as shown in Figure 2.1; these are identified and removed when comparing minima

across methods (see Section B).
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2.3 Optimizers

2.3.1 Gradient Descent

The steepest descent ODE (Eq. 1.9) may be solved numerically by discretizing time. The simplest

approach is the forward Euler scheme,

𝑿 (𝑡 + d𝑡) ≈ 𝑿 (𝑡) − d𝑡 ∇𝑿𝐸 (𝑿 (𝑡)), (2.3)

which updates the configuration by taking a step of size d𝑡 in the direction of steepest descent.

This algorithm is widely known as “gradient descent” in the optimization literature, though in the

jamming and glass communities it is often referred to simply as “steepest descent”. The accuracy

of forward Euler depends on the choice of time step d𝑡 : smaller steps yield trajectories closer to

the true ODE solution, but at a greater computational cost. A fixed time step that works well

in one region of configuration space may be unnecessarily small elsewhere or catastrophically

large near sharp features of the landscape. Adaptive time-stepping addresses this by adjusting d𝑡

dynamically. While many schemes exist, our goal is to understand their usage in the jamming

community. We therefore employ the scheme used for soft-sphere packings in Ref. [79], where

the step size is controlled by requiring that successive gradients remain nearly aligned:

𝒈̂(𝑡) · 𝒈̂(𝑡 + d𝑡) > 1 − 𝜖, (2.4)

where 𝒈̂(𝑡) = ∇𝑿𝐸 (𝑿 (𝑡))/|∇𝑿𝐸 (𝑿 (𝑡)) | is a unit vector pointing in the direction of the gradi-

ent. The parameter 𝜖 sets the tolerance: if the angle between successive gradients exceeds the

threshold, the step is rejected and d𝑡 is reduced. If the condition has been satisfied for some

number of successive gradients, we increase 𝑑𝑡 . The idea being that if the trajectory “curves”

too much, we need to be careful and reduce step size, and if the trajectory isn’t curving at all,
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we could try increasing the step size for performance reasons.. This adaptive scheme improves

the time-accuracy trade-off compared to fixed-step gradient descent [79, 110], but as we show in

Section 3.5, it remains computationally expensive for large systems. We discuss why it’s compu-

tationally expensive, based on the forward Euler discretization, in Section 2.4.1.

2.3.2 Momentum-Based Methods: FIRE

Momentum-basedmethods accelerate convergence by allowing the system to build up “inertia” as

it moves downhill, helping it traverse flat regions and narrow valleys more efficiently. The most

widely used such method in the jamming and glass communities is the Fast Inertial Relaxation

Engine (FIRE) [100], which has been employed in numerous studies of jammed packings [18, 30,

31, 33, 36].

To understand what we mean by adding momentum, let us take the Newton’s equation with

damping

𝑚 ¥𝑿 (𝑡) + 𝛾 ¤𝑿 (𝑡) = −∇𝑿𝐸 (𝑿 (𝑡)) . (2.5)

where𝑚 is the mass, 𝛾 is a damping coefficient, and the gradient term is the force from the poten-

tial. Gradient descent can be understood as the limiting case we take𝑚 → 0, having no inertia,

but a finite damping term 𝛾 , which we can reabsorb into the energy 𝐸 (𝑿 (𝑡)). FIRE and other

momentum based methods such as Nesterov’s accelerated gradient descent [111, 112] broadly

used in optimization reintroduce the momentum term with tweaks.

FIRE tweaks the momentum term the following way,

𝑚 ¥𝑿 (𝑡) + 𝛾 (𝑡)
(
¤𝑿 (𝑡) + | ¤𝑿 (𝑡) | ∇𝑿𝐸 (𝑿 (𝑡))

|∇𝑿𝐸 (𝑿 (𝑡)) |

)
= −∇𝑿𝐸 (𝑿 (𝑡)), (2.6)

where 𝛾 (𝑡) is now a time-dependent damping coefficient, and the additional term proportional to

𝛾 (𝑡) continuously reorients the velocity toward the steepest descent direction, but with a delay

controlled by the mixing parameter 𝛼 = 𝛾 d𝑡/𝑚. We note however that the additional reorien-
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tiation term removes the limiting case of our Newton’s equation going to steepest descent, for

example under the limit𝑚 → 0 we get

¤𝑿 (𝑡) = −∇𝑿𝐸 (𝑿 (𝑡))
(

1
𝛾 (𝑡) +

| ¤𝑿 (𝑡) |
|∇𝑿𝐸 (𝑿 (𝑡)) |

)
. (2.7)

This equation clearly shows that the extra “push” along the gradient survives in the limit we take

to remove momentum, although we note that once we parametrize by path length, the equation is

the same as steepest descent. We highlight this discussion in particular because the usage of FIRE

is extremely common in the study of jamming and glasses and it has come up in conversation

that FIRE is a more physical protocol[34] to generate packings than other optimizers. We note

however that in that limit 𝛼 → ∞, which affects the numerical procedure used to solve FIRE

below.

At each step of trying to solve Newton’s equations (2.5), the velocity is updated according to

𝒗 ← (1 − 𝛼)𝒗 − 𝛼 |𝒗 | 𝒈̂, (2.8)

where 𝒈̂ = ∇𝑿𝐸/|∇𝑿𝐸 | is the unit gradient. This mixes the current velocity with a vector pointing

along the steepest descent direction but with the same speed.

FIRE adapts its parameters based on the instantaneous power 𝑃 = −𝒗 · ∇𝑿𝐸. When 𝑃 > 0

(the system is moving downhill), the time step is gradually increased and 𝛼 is decreased, allowing

momentum to build up. When 𝑃 ≤ 0 (the system has overshot and is moving uphill), the time

step is reduced, 𝛼 is reset, and the velocity is zeroed. This adaptive scheme allows FIRE to take

aggressive steps in smooth regions while remaining stable near minima.

We employ a strictly downhill variant of FIRE [17] that incorporates two modifications. First,

whenever 𝑃 ≤ 0, the algorithm rejects the step and reverts to the previous configuration, ensuring

that the energy decreases monotonically. Second, the step size is limited to a maximum displace-

ment, preventing the trajectory from jumping across basin boundaries in a single step. These
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modifications make FIRE more careful but do not change the fundamental issue: the dynamics of

Eq. 2.6 differ from steepest descent.

2.3.3 Quasi-Newton Methods: L-BFGS

Gradient descent can be painfully slow in landscapes with anisotropic curvature. In an elongated

valley, the gradient points mostly across the valley rather than along it, causing the algorithm

to zigzag toward the minimum. Newton’s method addresses this by incorporating curvature

information. A second-order Taylor expansion around 𝑿𝑘 gives

𝐸 (𝑿𝑘 + 𝛿𝑿 ) ≈ 𝐸 (𝑿𝑘) + 𝒈𝑘 · 𝛿𝑿 +
1
2
𝛿𝑿𝑇 · 𝑯𝑘 · 𝛿𝑿 , (2.9)

where 𝒈𝑘 = ∇𝑿𝐸 (𝑿𝑘) is the gradient and 𝑯𝑘 is the Hessian. If we’re close to a minimum we can

set the gradient of this quadratic approximation to zero yielding the Newton step:

𝛿𝑿N = −𝑯
−1
𝑘 · 𝒈𝑘 . (2.10)

For a purely quadratic landscape, this step reaches the minimum exactly. Figure 2.2 illustrates

this distinction: gradient flow curves along the energy surface following 𝑑x/𝑑𝑡 = −∇𝐸, while

Newton’s method jumps directly to the minimum by inverting the Hessian.

The practical obstacle is that computing and inverting the Hessian scales as O(𝑁 2) in storage

and O(𝑁 3) in computation, which is prohibitive for the particle systems we consider.

2.3.3.1 The BFGS Update

Quasi-Newton methods approximate the inverse Hessian using only gradient evaluations. The

Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [113–116] treats each optimization step

as a measurement of the local curvature.
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x0

x∗

Figure 2.2: The newton optimization trajectory on an anisotropic quadratic energy landscape 𝐸 (x) =
𝑥2

1 + 10𝑥2
2 . Blue: Newton’s method converges to the minimum x∗ in one step. Orange: gradient flow

follows the steepest descent ODE, curving along the elongated contours.

Suppose you take a step 𝒔𝑘−1 = 𝑿𝑘 − 𝑿𝑘−1 and observe how the gradient changes: 𝒚𝑘−1 =

𝒈𝑘 − 𝒈𝑘−1. Forf an exactly quadratic energy, these are related by the secant condition:

𝑯 · 𝒔𝑘−1 = 𝒚𝑘−1. (2.11)

This is a measurement: by probing the landscape along direction 𝒔𝑘−1, you learn how the Hessian

acts on that direction. One step provides one projective measurement that constrains our 𝑁 × 𝑁

Hessian.

BFGS maintains an estimate 𝑩𝑘 of the inverse Hessian, updated after each step to incorporate

the new measurement. The update must satisfy three requirements: (i) the secant condition in

inverse form, 𝑩𝑘 · 𝒚𝑘−1 = 𝒔𝑘−1; (ii) symmetry; and (iii) positive definiteness, ensuring the search

direction points downhill. Among all matrices satisfying these constraints, BFGS chooses the one

closest to the previous estimate 𝑩𝑘−1—the minimal modification needed to incorporate the new
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measurement. The result is:

𝑩𝑘 =
(
𝑰 − 𝜌𝑘−1𝒔𝑘−1𝒚

𝑇
𝑘−1

)
𝑩𝑘−1

(
𝑰 − 𝜌𝑘−1𝒚𝑘−1𝒔

𝑇
𝑘−1

)
+ 𝜌𝑘−1𝒔𝑘−1𝒔

𝑇
𝑘−1, (2.12)

where 𝜌𝑘−1 = 1/(𝒚𝑘−1 · 𝒔𝑘−1). This is a rank-two update: it modifies 𝑩𝑘−1 only in the two-

dimensional subspace spanned by 𝒔𝑘−1 and 𝒚𝑘−1, the directions probed by the latest step. Curva-

ture information in all other directions is inherited unchanged.

While BFGS avoids computing the true Hessian, storing the full matrix𝑩𝑘 still requiresO(𝑁 2)

memory, which becomes impractical for large systems.

2.3.3.2 Limited-Memory BFGS

The limited-memory BFGS (L-BFGS) algorithm [101, 117] eliminates the need to store 𝑩𝑘 explic-

itly. The key observation is that we never need the matrix itself—only its action on the current

gradient, 𝑩𝑘 ·𝒈𝑘 . By storing the𝑀 most recent measurement pairs {(𝒔 𝑗 ,𝒚 𝑗 )}𝑘−1
𝑗=𝑘−𝑀 , we can recon-

struct this matrix-vector product without forming the matrix. This reduces memory from O(𝑁 2)

to O(𝑀𝑁 ); typical values of𝑀 range from 3 to 20, and we use𝑀 = 4 throughout.

The algorithm proceeds via a two-loop recursion. To compute the search direction 𝒑𝑘 =

−𝑩𝑘 · 𝒈𝑘 , we start with the current gradient 𝒒 = 𝒈𝑘 and work backward through the stored pairs,

progressively removing the contribution of each measurement:

for 𝑗 = 𝑘 − 1, 𝑘 − 2, . . . , 𝑘 −𝑀 : 𝛼 𝑗 = 𝜌 𝑗 (𝒔 𝑗 · 𝒒), 𝒒← 𝒒 − 𝛼 𝑗 𝒚 𝑗 . (2.13)

The coefficients 𝛼 𝑗 are stored for later use. After this loop, 𝒒 represents the gradient transformed

by the “oldest” part of the inverse Hessian estimate. We then apply an initial scaling:

𝒓 = 𝐻0 𝒒, where 𝐻0 =
𝒔𝑘−1 · 𝒚𝑘−1

𝒚𝑘−1 · 𝒚𝑘−1
. (2.14)
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This choice of 𝐻0 sets the overall scale of the step based on the most recent curvature measure-

ment. Finally, the second loop works forward, reincorporating each measurement:

for 𝑗 = 𝑘 −𝑀,𝑘 −𝑀 + 1, . . . , 𝑘 − 1 : 𝛽 𝑗 = 𝜌 𝑗 (𝒚 𝑗 · 𝒓), 𝒓 ← 𝒓 + (𝛼 𝑗 − 𝛽 𝑗 ) 𝒔 𝑗 . (2.15)

The search direction is 𝒑𝑘 = −𝒓 . This procedure computes the exact same direction that full BFGS

would produce if started from 𝑩0 = 𝐻0 𝑰 and updated with only the𝑀 most recent pairs.

2.3.3.3 Step Size Control and Modifications

The L-BFGS direction 𝒑𝑘 provides a descent direction, but the step length must still be chosen.

Standard implementations use a line search satisfying the Wolfe conditions [118], which can

accept large steps when the curvature estimate is accurate. For basin identification, however,

large steps risk jumping across basin boundaries.

We employ the“safe” version recommended in Ref. [28]. First, the step is constrained to a

maximum length Δmax: if ∥𝒑𝑘 ∥ > Δmax, the step is rescaled. Second, a backtracking line search

ensures the energy does not rise significantly: if 𝐸 (𝑿𝑘 + 𝒑𝑘) > 𝐸 (𝑿𝑘) + 𝜖𝑓 for a small tolerance

𝜖𝑓 , the step is halved repeatedly until the condition is satisfied. Third, if the search direction

points uphill (𝒑𝑘 · 𝒈𝑘 > 0), which can occur when the curvature approximation becomes poor,

the direction is reversed. It is important to note that these modifications are only heuristics that

work well [28]. For example direction reversal is not really justified in the sense that the descent

direction just aligns with the gradient, but nothing more.

These modifications make L-BFGS more conservative but do not resolve the fundamental

issue: L-BFGS is designed to reach a minimum quickly, not to follow the gradient flow.
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2.4 Implicit ODE Solvers: BDF Methods

The steepest descent equation (Eq. 1.9) is an ODE, and we can solve it directly using numerical

integration rather than relying on optimizers. This approach has a significant advantage: by

controlling the numerical error in the ODE solution, we can systematically improve the accuracy

of basin identification. The challenge is choosing an integration scheme suited to the structure

of the problem.

2.4.1 Stiffness and the Failure of Explicit Methods

The steepest descent ODE on high dimensional energy functions can be stiff 1: the Hessian eigen-

values span many orders of magnitude. Physically, this means the system has both fast modes

(steep directions with large curvature) and slow modes (soft directions with small curvature).

The steepest descent dynamics cause fast modes to decay rapidly while slow modes persist, and

the trajectory to the minimum is typically dominated by motion along the slow directions.

To understand why stiffness is problematic for explicit integrators, consider forward Euler

applied to a simple test case: a one-dimensional linear ODE ¤𝑥 = −𝜆𝑥 with 𝜆 > 0. The exact

solution decays exponentially as 𝑥 (𝑡) = 𝑥0𝑒
−𝜆𝑡 . Forward Euler gives the update

𝑥𝑘+1 = 𝑥𝑘 − d𝑡 𝜆 𝑥𝑘 = (1 − 𝜆 d𝑡) 𝑥𝑘 . (2.16)

After 𝑛 steps, 𝑥𝑛 = (1 − 𝜆 d𝑡)𝑛𝑥0. For this to decay rather than blow up, we need |1 − 𝜆 d𝑡 | < 1,

which requires

d𝑡 <
2
𝜆
. (2.17)

1Correspondingly the energy function is ill conditioned for optimization

28



If the step size exceeds this threshold, the numerical solution oscillates with growing amplitude

and diverges to infinity. For a multidimensional system, the same analysis applies to each eigen-

mode of the Hessian. The gradient can be decomposed into components along the eigenvectors

of 𝑯 , and each component evolves independently as ¤𝑎𝑖 = −𝜆𝑖𝑎𝑖 . The stability constraint becomes

d𝑡 < 2/𝜆max, where 𝜆max is the largest eigenvalue.

This constraint has nothing to do with accuracy, it prevents the numerical solution from

blowing up. Even if we only care about tracking the slow dynamics, we must take tiny steps to

keep the fast modes from exploding. Near jamming, where 𝜆max/𝜆min can be O(106) (Fig. 2.4), this

means taking millions of steps when only thousands would suffice for convergence. The result

is that explicit methods spend enormous computational effort taking many small steps, most of

which contribute little to progress toward the minimum.

x0

x∗ long direction
(λmin)

short direction
(λmax)

Figure 2.3: Steepest descent on an ill-conditioned quadratic 𝐸 (x) = 𝑥2
1 + 100𝑥2

2 . The trajectory from x0
to the minimum x∗ quickly decays along the short direction (high curvature, 𝜆max) then slowly traverses
the long direction (low curvature, 𝜆min). Forward Euler’s step size is constrained by the shortest direction
𝜆max, yet most computational effort is spent moving along the long direction.

2.4.2 Implicit Methods

Implicit methods avoid this constraint by evaluating the right-hand side of the ODE at the future

time rather than the current time. The simplest example is backward Euler:

𝑿𝑘+1 = 𝑿𝑘 − d𝑡 ∇𝑿𝐸 (𝑿𝑘+1). (2.18)
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Figure 2.4: Distribution of condition numbers 𝜆max/𝜆min for𝑁 = 512 Hertzian packings in 2𝑑 at𝜙 = 0.845.
The 491 jammed minima were obtained via L-BFGS minimization from random initial conditions. The
mean condition number is (4.2 ± 0.3) × 104 (standard error), with a maximum of 8.7 × 105 ∼ O(106).

Unlike forward Euler, where 𝑿𝑘+1 is computed explicitly from known quantities, here 𝑿𝑘+1 ap-

pears on both sides. This is an implicit equation: given 𝑿𝑘 , we must solve a nonlinear system to

find 𝑿𝑘+1, typically via Newton iteration.

To see why this helps, consider again the test equation ¤𝑥 = −𝜆𝑥 . Backward Euler gives

𝑥𝑘+1 = 𝑥𝑘 − d𝑡 𝜆 𝑥𝑘+1 ⇒ 𝑥𝑘+1 =
𝑥𝑘

1 + 𝜆 d𝑡
. (2.19)

The amplification factor is 1/(1+𝜆 d𝑡), which is less than 1 for any positive 𝜆 and d𝑡 . The method

is unconditionally stable: nomatter how large 𝜆max is, the numerical solution never blows up. Fast

modes are damped regardless of whether we resolve them temporally. The step size can thus be

chosen based on accuracy requirements alone, allowing much larger steps than explicit methods

when the dynamics are dominated by slow modes.

Backward Euler is first-order accurate: the local truncation error scales as O(d𝑡2). For better
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efficiency, one neeeds higher-order methods that achieve the same accuracy with fewer, larger

steps.

2.4.3 Backward Differentiation Formulas

The backward differentiation formulas (BDF)[119] are a family of implicit multistep methods that

achieve higher-order accuracy by using information from several previous steps. The idea is to

fit a polynomial through the points 𝑿𝑘+1,𝑿𝑘 ,𝑿𝑘−1, . . . ,𝑿𝑘−𝑞+1, differentiate this polynomial to

approximate ¤𝑿𝑘+1, and require the result to satisfy the ODE:

𝑞∑︁
𝑗=0

𝑎 𝑗 𝑿𝑘+1− 𝑗 = d𝑡 𝒇 (𝑿𝑘+1), (2.20)

where 𝒇 (𝑿 ) = −∇𝑿𝐸 (𝑿 ) and the coefficients 𝑎 𝑗 are chosen to maximize the order of accuracy.

The 𝑞-step BDF method is order-𝑞 accurate: local truncation error scales as O(d𝑡𝑞+1).

For 𝑞 = 1, the BDF formula reduces to backward Euler. Higher-order BDF methods (𝑞 =

2, . . . , 5) retain the favorable properties needed for stiff problems. BDF of order 6 and higher can

exhibit growing oscillations for certain stiff problems and are rarely used in practice. For most

stiff problems, BDF orders 1–5 provide an excellent tradeoff between accuracy and the number

of steps required.

2.4.4 CVODE

We use CVODE [120], an adaptive BDF solver from the SUNDIALS suite developed at Lawrence

Livermore National Laboratory. CVODE is a production-grade ODE solver incorporating decades

of research into robust numerical integration. We highlight a few key aspects here; the full im-

plementation includes many additional optimizations for efficiency and reliability.
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Adaptive step size. CVODE estimates the local truncation error at each step by comparing so-

lutions of different orders. It then adjusts d𝑡 to keep the estimated error below user-specified tol-

erances: when the solution varies slowly, it takes large steps; when the solution changes rapidly,

it automatically refines the step size. This adaptivity is essential for efficiency, as the optimal step

size can vary by orders of magnitude along a single trajectory.

Adaptive order. CVODE dynamically selects the BDF order between 1 and 5 based on the

local behavior of the solution. Near the start of integration or after rapid changes, it uses lower-

order methods which are more robust; in smooth regions, it increases the order for efficiency.

The order selection is based on estimates of the error that would result from using neighboring

orders.

Newton iteration. At each step, CVODE must solve the implicit system (2.20) for 𝑿𝑘+1. It

does this using Newton iteration, which requires the Jacobian 𝜕𝒇/𝜕𝑿 . Rather than recomputing

the Jacobian at every step (which would be expensive), CVODE maintains an approximate Jaco-

bian that is updated only when Newton convergence slows. This amortizes the cost of Jacobian

evaluation over many steps.

Error tolerances. CVODE controls accuracy through two user-specified parameters: the rel-

ative tolerance 𝜖rel and the absolute tolerance 𝜖abs. At each step, the solver estimates the local

error 𝒆𝑘 and requires that each component satisfy

|𝑒𝑘,𝑖 | ≤ 𝜖rel |𝑋𝑘+1,𝑖 | + 𝜖abs. (2.21)

The relative tolerance controls accuracy when the solution is large: an error of 1 in a component

of magnitude 106 is acceptable if 𝜖rel = 10−6. The absolute tolerance controls accuracy when

the solution is small: without it, the relative criterion would demand arbitrarily small errors as

32



𝑋𝑘+1,𝑖 → 0.

2.4.5 Cost Tradeoff

Implicit methods are more expensive per step than explicit methods. Each step requires solving a

nonlinear system, which involves multiple gradient evaluations and, periodically, Jacobian com-

putations. For problems that are not stiff, this overhead makes implicit methods uncompetitive.

For stiff problems, however, the tradeoff changes entirely. An explicit method might require

106 tiny steps to maintain stability, while an implicit method achieves the same accuracy with 103

larger steps. Even if each implicit step costs 10 times more in gradient evaluations, the implicit

method is faster by a factor of 100 overall. As we demonstrate in Section 2.5, CVODE provides

the best time-error tradeoff for solving the steepest descent ODE in jammed packings.

2.5 Benchmarking ODE Solvers

In Section 2.4.1, we explained stiffness using essentially a linear stability analysis of forward Euler

and backward Euler, note that our gradient is nonlinear. Here we adopt the working definition as

quoted in the beginning of this chapter[119]: a stiff equation is one where implicit methods perform

much better than explicit ones.

We investigate which ODE solver offers the best possible time-for-error trade-off. Due to the

stiffness of the problem, we only focus on adaptive implicit solvers for 𝑁 > 16 and compare

a range of production-grade ODE solvers on the energy landscape of Hertzian disk packings,

reporting a benchmark in Fig. 2.5 The benchmark consists of work-precision diagrams computed

for 𝑁 = 8, 16, 32, 64, 128, with the same size distribution as in the main text. For each system size,

we spawn 100 random starting points 𝑿0, drawn unifor mly in the periodic square box [0;𝐿]2,

then solve the steepest descent dynamics, Eq. 1.9, using a wide range of ODE solvers available in

the Julia DifferentialEquations.jl package [121], including lsoda, a Fortran ODE solver library that
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switches between implicit and explicit methods based on a stiffness criterion. For 𝑁 = 32, 64, and

128, we restrict ourselves to more performant methods to avoid prohibitive computation times.

The error in adaptive ODE solvers is managed via a relative local error tolerance, rtol, and

an absolute error tolerance atol, that ensure at each step that the trajectory does not stray away

from the true ODE solution more than a specified amount (using a relative and an absolute dis-

tance, respectively). The absolute error tolerance atol sets the error bound when the coordinates

are close to the origin, where the relative indicator rtol is ill-defined. Here, each ODE solver is

run independently for a variety of values of the relative tolerance parameter rtol, and for a large

enough integration time that the distance of the final point to the minimum is less than 10−2, in

this case 𝑡stop = 10000. We ensure that the relative performance of ODE solvers is insensitive to

the stopping time.

We thenmeasure for each computed trajectory: (i) the time the computation took (in seconds),

and (ii) themaximal distance a particle deviates from the true steepest descent path over thewhole

trajectory,

𝑑solvermax (𝑿0, rtol) ≡ max
0≤𝑡≤𝑡stop

∥𝑿solver(𝑡 ;𝑿0, rtol) − 𝑿ref(𝑡 ;𝑿0)∥ , (2.22)

where 𝑿solver(𝑡 ;𝑿0, rtol) is the trajectory found by the solver from the initial position 𝑿0 and

at a given value of rtol, and 𝑿ref is the steepest descent trajectory. We then construct a Mean

Trajectory Distance, defined as the average over random initializations 𝑿0 of 𝑑solvermax . In practice,

we estimate the Mean Trajectory Distance using 100 evenly spaced points along the trajectory.

The reference trajectory 𝑿ref is obtained using CVODE_BDF with stringent tolerances (rtol =

atol = 10−12).

The results show that among the wide range of parameters we use, CVODE_BDF (see Sec-

tion 2.4) outperforms other ODE solvers, with QNDF and FBDF also showing competitive per-

formance as system size increases. We also note that at 𝑁 = 8 and 𝑁 = 16, we can clearly see
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that explicit solvers outperform implicit ones by orders of magnitude confirming our working

definition of stiffness for the steepest descent ODE on hertzians. We emphasize that all ODE

solvers converge to the same trajectory as rtol is decreased, and our calculations are always

performed in the regime where our identified basin is independent of precise solver parameters.

We therefore adopt CVODE as our reference ODE solver in the rest of this thesis.

Figure 2.5: Benchmarking ODE solvers. (𝑎)–(𝑒) Plots of the Mean Trajectory Distance versus Aver-
age Computation Time for different numbers of particles 𝑁 = 8, 16, 32, 64, and 128, respectively. Error
bars represent the standard error of the mean (SEM) for both the Mean Trajectory Distance and Average
Computation Time. Points highlighted by filled triangles correspond to the maximum tolerance values
used among all calculations.
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2.5.1 Performance on Other Systems

To rule out the possibility that CVODE is optimal only for our choice of interaction potential,

we perform the same benchmark as in Section 2.5 on three other systems, spawning 100 random

starting points uniformly in configuration space for each of them.

In Fig. 2.6(𝑎), we consider a set of 𝑁 = 8 soft spheres interacting via a harmonic potential,

𝑉𝑖 𝑗 (𝑟𝑖 𝑗 ) = 𝜀
(
1 −

𝑟𝑖 𝑗

𝑅𝑖 + 𝑅 𝑗

)2
1

(
𝑟 ≤ 𝑅𝑖 + 𝑅 𝑗

)
, (2.23)

rather than a Hertzian one. We show that CVODE outperforms other solvers in a way similar

to that described in the case of a Hertzian potential, Fig. 2.5. As discussed in 2.2, As discussed

in Section 2.2, the harmonic potential exhibits a discontinuous Hessian at the onset of contact;

nevertheless, CVODE retains its superior performance.

In Figs. 2.6(𝑏)–(𝑐), we consider variations on the XY model [122], with the energy function

𝐸 = −
𝑁∑︁
𝑖=1

∑︁
𝑗∈𝜕𝑖

𝐽𝑖 𝑗𝒔𝑖 · 𝒔 𝑗 , (2.24)

where 𝒔𝑖 = (cos𝜃𝑖, sin𝜃𝑖) is a two-dimensional unit vector parametrized by an angle 𝜃𝑖 ∈ [0; 2𝜋),

𝐽𝑖 𝑗 is the interaction constant between spins 𝑖 and 𝑗 (𝐽𝑖 𝑗 > 0 is aligning, 𝐽𝑖 𝑗 < 0 is anti-aligning),

and 𝜕𝑖 is the neighborhood of spin 𝑖 , which depends on the chosen geometry for the problem.

Note that the dynamical system defined by the steepest descent equation for Eq. 2.24 with align-

ing interactions is also known as the Kuramoto model, whose basins of attraction have been

previously investigated [20–22, 123]. In Fig. 2.6(𝑏), we choose a one-dimensional geometry with

nearest-neighbor interactions only, and we set 𝐽𝑖 𝑗 = +1 between neighbors, defining a usual fer-

romagnetic XYmodel. In Fig. 2.6(𝑐), we choose a two-dimensional triangular lattice with 𝐽𝑖 𝑗 = −1

interactions between nearest neighbors, thus defining a fully-frustrated XY model [124–126], a

classical model of deterministic spin glass. In both cases, Tsit5 [121, 127], a variant of RK4, per-
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forms comparably to CVODE. This implies that the steepest descent equation in the case of the

XY model, even in a glassy regime, is not stiff enough that there is a significant performance

gap between implicit and explicit methods. Note that we checked that lsoda, the solver used in

Refs. [21, 22], performs significantly worse than the solvers we show in this benchmark, so that

we do not show it in Fig. 2.6.

Figure 2.6: Benchmarking ODE solvers on other systems. (𝑎) Interacting pairwise potential with
harmonic interactions. (𝑏) 1D XY model (Kuramoto). (𝑐) Frustrated XY model on a triangular lattice.
Error bars represent the standard error of the mean (SEM) for both the Mean Trajectory Distance and
Average Computation Time. For the XY model [(𝑏) and (𝑐)] we utilize Jacobian-free GMRES solvers
provided by the libraries for all implicit methods (CVODE, QNDF, FBDF) for speed.

2.6 Discussion

This chapter reviewed the numerical methods used in energy landscape studies and established

the tools we use throughout this thesis. The central lesson is that the steepest descent equation

is an ODE, and optimizing performance while preserving physics requires treating as such.

The optimizers commonly used in the energy landscape studies: Gradient Descent, FIRE, and

L-BFGS were designed for different purposes. Gradient descent uses a forward Euler discretiza-

tion of the steepest descent ODE and suffers from it’s corresponding penalties if instead used to

solve the ODE. FIRE introduces a velocity reorientation term, and the commonly used numerical
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procedure does not solve steepest descent. L-BFGS approximates the inverse Hessian to converge

quickly to a minimum, not to follow any particular trajectory. These methods can be used reach

to minima efficiently, but they do not solve the ODE that defines basins of attraction.

An important aspect of the steepest descent ODE on jammed packings that is not commonly

talked about, is that it is stiff : Both in the linear stability sense, Hessian eigenvalues span many

orders of magnitude, and through the working definition, stiff equations are those where implicit

methods perform much better than explicit ones.

Explicit integrators face a stability constraint unrelated to accuracy on stiff problems, whereas

Implicit methods such as BDF avoid this constraint entirely, allowing step sizes to be chosen based

on accuracy alone. Among the solvers we tested, CVODE provides the best time-accuracy tradeoff

for this problem.

We emphasize that the performance results may not be universal. For the XY model at the

system sizes shown, even in its frustrated (glassy) variant, explicit and implicit methods perform

comparably, implying that the equation is not stiff enough for implicit methods to vastly outper-

form explicit ones. However researchers studying other energy landscapes should benchmark

their specific system rather than assuming that conclusions from one domain transfer to another.

But, as we show through the rest of the thesis, we strongly discourage using optimizers as a proxy

to get physics requiring steepest descent paths.

The methods presented here—particularly the distinction between optimization and ODE in-

tegration, and the role of stiffness in solver selection—provide a foundation for the results that

follow. In subsequent chapters, we use CVODE as our reference method for basin identification.
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3 | Accuracy and Basic Observables

Where the clear stream of reason has not lost its way

Into the dreary desert sand of dead habit.
— Rabindranath Tagore, Gitanjali

3.1 Introduction

One line of study of potential energy landscapes hinges on identifying basins of attraction, which

are formally defined through the steepest descent equation: an ordinary differential equation

(ODE) that traces the path from any initial configuration to a local minimum. Since the late

1980s1[128], researchers have framed this problem as one of energy minimization or a quench,

and in practice have relied on numerical optimizers, algorithms designed to rapidly drive a system

toward low-energy states. Formany applications, such as exhaustively enumeratingminima from

sampled configurations, optimizers are well-suited to the task. However, the distinction between

minimizing energy and solving the steepest descent ODE is often blurred or ignored, and the

question remains when the fidelity to the underlying dynamics is too essential to ignore.

Framing basin identification as a minimization problem is fundamentally problematic because
1The earliest paper we could find was a 1985 paper by Stillinger and Weber using the Newton’s method [128]. In

a 1986 paper LaViolette and Stillinger [129], trying to describe the geometry of basin, by solving for a portion of the
steepest descent path with forward Euler, says explicitly they would rather do a minimization instead if they just
wanted the inherent structure/corresponding minimum

39



most optimizers do not solve the steepest descent ODE at all2. The one exception is gradient de-

scent also commonly referred to simply as “steepest descent” in the jamming and glass communi-

ties, which corresponds to a forward Euler discretization of the ODE. Other widely used methods

solve entirely different equations: quasi-Newton methods like L-BFGS exploit Hessian informa-

tion to accelerate convergence but are only guaranteed to recover the correct basin for strictly

convex landscapes; momentum-basedmethods like FIRE introduce inertia, solving a second-order

ODE whose trajectories diverge from steepest descent paths. Previous work benchmarking these

methods for small systems [28] has suggested reasonable accuracy. Even gradient descent, how-

ever, faces a serious numerical challenge: forward Euler is inherently unstable on stiff problems

like the ones we consider, and achieving accurate basin identification requires prohibitively small

time steps. Commonly introduced adaptive time-stepping strategies in the jamming community,

such as those controlling step size via the cosine similarity between successive gradients, improve

the time-accuracy trade-off but remain computationally expensive for large systems.

In this chapter, we demonstrate that the accuracy of these widely used optimizers collapses

catastrophically as system size grows. We study two-dimensional polydisperse collections of

Hertzian disks above the jamming transition, and benchmark algorithms against accurate solu-

tions of the steepest descent ODE obtained using the CVODE solver, an adaptive implicit method

offering the best time-for-error trade-off among the ODE solvers we test. We show that the ac-

curacy of FIRE and L-BFGS decays exponentially with particle number 𝑁 , dropping to near zero

for 𝑁 ≳ 64. For systems of 128 particles, not a single point in representative two-dimensional

slices of configuration space is mapped to the correct basin by these optimizers. Even adaptive

gradient descent, while degrading more slowly, fails to scale without prohibitive computational

cost.

These findings have the following implications: the vast majority of past studies that relied
2The minimization picture treats the basin of attraction as a bowl. This makes sense for crystals they have a

large convex region [129]. Starting from any point within the bowl, any descent path, one that always moves toward
lower energy, will ultimately converge to the same local minimum at the bottom.
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on optimizers for basin identification in systems larger than a handful of particles have likely

misattributed every single basin. Furthermore, optimizer errors bias the distribution of minimum

energies and even estimates of the jamming transition. The chapter proceeds as follows. We

first briefly describe the methods we compare (Section 3.2), referring readers to Chapter 2 to

explain the details of why we do what we do here. We then examine the effect of optimizer

choice on the distribution of minimum energies (Section 3.3) and on estimates of the jamming

transition (Section 3.4), present quantitative comparisons of accuracy and computational cost

across methods (Section 3.5), and visualize the unscrambling of the energy landscape through

two-dimensional slices (Section 3.6). We also demonstrate that the accuracy of solvers gets worse

with packing fraction (Section 3.6.3). The central message is that convergent basin identification

is achievable at practically relevant system sizes, but only by solving the steepest descent ODE

with appropriate numerical methods.

3.2 Method Description

While we invite readers to consult Chapter 2 for detailed descriptions, we give brief summaries

of what we mean when we say CVODE/FIRE/L-BFGS:

1. CVODE: basin assigned with numerical solution to the steepest descent ODE, at an er-

ror threshold that the basin obtained is not error sensitive, with the solver with the best

time/error tradeoff.

2. FIRE: basin assigned with the FIRE optimizer with commonly used parameters/changes

3. L-BFGS: basin assignedwith the L-BFGS optimizerwith commonly used parameters/changes
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3.3 Distribution of Energies at Minima

We first examine the effect of the minimization method on the distribution of energies at minima.

For each method, and for 𝑁 ∈ {8, 32, 128, 512, 2048}, we use the same 106 initial conditions for

optimization, uniformly drawn at random in configuration space, at 𝜙 = 0.9. We then collect

the energies at the minima, and study their distributions. In Fig. 3.1(𝑎), we plot the differences

between the mean total energies obtained with FIRE/L-BFGS and CVODE, as a function of 𝑁 . We

report a growing bias towards lower energies in both FIRE and L-BFGS as 𝑁 grows, meaning that

the choice of method does affect the distribution of energies. It is worth noting that FIRE and

L-BFGS do not create any new minima compared to CVODE, so that this difference is solely due

to how often a given minimum is found—or, in other words, to the distribution of basin volumes

being altered. To investigate the effect of this phenomenon further, we plot the relative errors on

mean energy per particle against 1/𝑁 in Fig. 3.1(𝑏). We show that the relative error in fact decays

with 𝑁 , meaning that the bias of Fig. 3.1(𝑎) is subextensive. However, as indicated by a dashed

line, the error vanishes algebraically slowly and with a small power, roughly as 𝑁 −1/6 for both

FIRE and L-BFGS. While with our choice of potential the numerical value of the error remains

rather small because the prefactor of the algebraic decay is small, another potential could display

equally slow convergence with 𝑁 but with larger prefactors. Finally, we assess the effects of the

minimization method on the full distributions of energies. In Fig. 3.1(𝑐), we plot the empirical

distributions obtained for total energies at minima for 𝑁 = 2048 particles. The distributions

obtained through FIRE and L-BFGS display a systematic bias towards lower energies throughout.

However, as shown in Fig. 3.1(𝑑), the shape of the distribution is only very weakly modified, as

empirical distributions of the reduced energies at minima 𝑒 ≡ (𝐸− ⟨𝐸⟩)/𝜎𝐸 , with 𝜎𝐸 the empirical

standard deviation, overlap almost perfectly.

42



5 10 50 100 5001000 5000

-0.00020

-0.00015

-0.00010

-0.00005

0.00000

N

<
E
>
-
<
E
C
V
O
D
E
>

CVODE
FIRE
L-BFGS

(a)

10-4 0.001 0.010 0.100 1
0.01

0.02

0.03

0.04

0.05

1/N

1
-
<
E
>
/<
E
C
V
O
D
E
>

1/
N
1/
6

FIRE
L-BFGS

(b)

0.006 0.008 0.010 0.012 0.014 0.016
0

50

100

150

200

250

300

E

p
(E
)

CVODE
FIRE

L-BFGS

(c)

-2 0 2 4
0.0

0.1

0.2

0.3

0.4

e

p
(e
)

CVODE
FIRE

L-BFGS

(d)

Figure 3.1: Energies at minima. (𝑎) Differences between mean energies of minima for each method
and the mean energies obtained with CVODE against 𝑁 , in log-linear scales. The CVODE line is repre-
sented to indicate standard error on the CVODE mean. (𝑏) Relative error on the energies with respect to
CVODE against 1/𝑁 , in log-log scales. The dashed black line indicates 1/𝑁 1/6. (𝑐) Empirical distribution
of energies 𝐸 at minima for all three methods for 𝑁 = 2048. (𝑑) Corresponding empirical distribution of
reduced energies 𝑒 ≡ (𝐸 − ⟨𝐸⟩)/𝜎𝐸 , in dashed lines. Throughout the figure, we encode CVODE by green,
FIRE by orange, and L-BFGS by blue. Error bars on the mean are obtained by bootstrapping over 1000
subsamples.

43



3.4 Jamming point

We study the effect of optimizers on the location of the jamming point. We consider a range of

system sizes, 𝑁 = 8, 16, 32, 64, 128, 256, 512, 1024, and, for each 𝑁 , a range of packing fractions

𝜙 ∈ [0.80; 0.86]. For each (𝑁,𝜙) combination, we draw a set of 103 random initial conditions

uniformly in [0;𝐿]𝑁𝑑 , and perform relaxations from them using FIRE, L-BFGS, and CVODE to

generate a list of minima. We then measure the fraction 𝑃𝐽 of these minima that is jammed, as

per the criterion given in Sec. B, and report the fraction of them that falls into a minimum with

all methods.

The results are shown in Fig. 3.2(𝑎) for 𝑁 = 16 and 105 random points. We show that there is

a noticeable shift in the curve when switching to optimizers. Across (𝑎) CVODE, (𝑏) FIRE, and

(𝑐) L-BFGS, 𝑃𝐽 displays a finite-size transition from 0 at low 𝜙 to 1 at high 𝜙 , with a transition

that gets sharper as 𝑁 increases, as expected at jamming [109]. We show that using FIRE or L-

BFGS leads to a systematic bias of the curve 𝑃𝐽 (𝜙) towards lower values (fewer jammed states,

more liquid states), meaning that 𝜙 𝐽 is overestimated. However, this bias is most pronounced at

small 𝑁 , so that previous reports of 𝜙 𝐽 values relying on large 𝑁 or on 𝑁 scalings were likely not

noticeably affected by their choice of optimizer.

We perform this measurement across 𝑁 , using 103 points per 𝑁 and density (see Fig. 3.3 for

full curves) and measure the packing fraction 𝜙 𝐽 with 𝑃𝐽 = 1/2. To evaluate the jamming density,

we perform a fit to a function of the form 𝑃 (𝜙) = 𝜎 (𝑎𝑥 + 𝑏)𝑝 where 𝜎 (𝑥) is the sigmoid function,

and we estimate a jamming packing fraction 𝜙 𝐽 as the packing fraction at which 𝑃𝐽 = 1/2.

The result is shown in Fig. 3.2(𝑏). Curves roughly follow power laws of the form 𝜙 𝐽 (∞) −

𝜙 𝐽 (𝑁 ) ∝ 1/𝑁 𝜃 with 𝜙 𝐽 ≈ 0.842 and 𝜃 ≈ 0.67 as previously reported [109, 130]. To assess the

effect of the choice of method on critical properties, we collect 𝜙 𝐽 (𝑁 ) values and fit them, for

each method, to a power law of the form |𝜙 𝐽 (𝑁 ) − 𝜙∞𝐽 | = 𝐶𝑁−𝜃 with fitting parameters 𝜙∞
𝐽
the

asymptotic 𝜙 𝐽 , 𝜃 a critical exponent, and 𝐶 a proportionality constant. We find that CVODE
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yields 𝜙∞
𝐽 (CVODE) ≈ 0.8415, whereas FIRE and L-BFGS yield 𝜙∞

𝐽 (FIRE) ≈ 0.8423, 𝜙∞
𝐽 (LBFGS) ≈ 0.8422,

but slightly different exponents: 𝜃CVODE ≈ 0.673, 𝜃FIRE ≈ 0.668, and 𝜃LBFGS ≈ 0.674. These values

are compatible with results from similar scaling analysis [109, 130].

Like for energies, a deviation between optimizers and CVODE remains noticeable at large

𝑁 . In the inset, we show the evolution of the relative difference of 𝜙 𝐽 between optimizers and

CVODE, showing a trend slower than 𝑁 −1/3. We note that the probability of observing a jammed

state is always higher with CVODE at all densities, as compared to using optimizer methods.

In short, optimizers introduce a bias on sampled minima that biases finite-size estimates of the

jamming density, with a slowly decaying error.
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Figure 3.2: Jamming Point. (𝑎) 𝑃 𝐽 against 𝜙 for 𝑁 = 16 across methods. Student-T 95% confidence
intervals are smaller than symbols. (𝑏) 𝜙 𝐽 against 𝑁 across methods. Solid lines are critical power-law
fits. Inset: relative error on 𝜙 𝐽 compared to CVODE against 𝑁 . Dashed black line: 𝑁 1/3 scaling (guide for
the eyes).
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Figure 3.3: Jamming transition across sizes. Fraction of jammed states as a function of packing frac-
tion, across system sizes (color within panels), using (𝑎) CVODE, (𝑏) FIRE, and (𝑐) L-BFGS. Error bars are
Clopper-Pearson 95% confidence intervals.

3.5 Accuracy of Optimizers

Armedwith CVODE as a fast, accuratemethod for solving the steepest descent ODE,we nowmea-

sure how much error is introduced by using optimizers to identify basins. For each set (𝑁,𝜙), we

tighten the tolerance of CVODE until the minima associated with a collection of random points in

configuration space stop changing, establishing a ground truth for basin identification. In Fig. 3.4,

we consider independent random points drawn from the configuration spaces of collections of

Hertzian disks with 𝑁 ∈ [8; 1024] at 𝜙 = 0.9. Panel (𝑎) shows the accuracy, the fraction of points

that are mapped to the correct minimum, against 𝑁 across methods, with the ground truth given

by low-tolerance CVODE (rtol = 10−14). The CVODE values are obtained using a looser tol-

erance, rtol = 10−13, demonstrating that it retains high accuracy. While FIRE and L-BFGS are

relatively accurate for (𝑁 − 1)𝑑 ≲ 10 [28], their accuracies fall exponentially with 𝑁 (dashed

lines), dropping near zero for 𝑁 ≳ 64. Thus, for systems with 𝑁 ≳ 64, optimizers practically

never map a point in configurational space to the correct basin of attraction.

We also test the adaptive gradient descent algorithm described in Section 2.3.1 with two

choices of the parameter 𝜖 that controls the stepsize via Eq. 2.4. If 𝜖 is fixed (GD), accuracy also

falls (like a stretched exponential), and approaches zero for 𝑁 > 128 for the 𝜖 used in Ref. [79].
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We also show that 𝜖 may be tuned at each 𝑁 to achieve 98% accuracy (GD98)—at a significant

time cost.

Panel (𝑏) shows the corresponding wall times against 𝑁 . While CVODE is slower than FIRE

and L-BFGS (O(𝑁 5/2) vs. O(𝑁 3/2)), it achieves computation times much smaller than GD98 (and

comparable to GD) with better accuracy. Note the timescales involved in CVODE, which reach

minutes per minimization in the systems we consider: generating the slice in Fig. 3.4(𝑐) required

3 weeks of CPU time, compared to 3 hours for Fig. 3.4(𝑒).
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Figure 3.4: Optimizers: fast but inaccurate. (𝑎) Average accuracy of algorithms, computed over 104

random points. Error bars are Clopper-Pearson 95% confidence intervals [131]. Dashed lines are expo-
nential fits, long-dashed line stretched exponential fits. (𝑏) Corresponding average computation times.
Error bars are Student-T 95% confidence intervals. (𝑐)–(𝑓 ) 800 × 800-pixel slices of configuration space
for 𝑁 = 128 particles for (𝑐) CVODE, (𝑑) GD, (𝑒) FIRE, and (𝑓 ) L-BFGS.
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3.6 Visualizing Basin Scrambling

3.6.1 Procedure for Generating 2D Energy Landscape Slices

To produce two-dimensional slices of the energy landscape color-coded by basin, as shown in

Fig. 3.5, we follow the procedure outlined below:

1. Sample the center point: A single configuration𝑿0 is sampled uniformly at random from

the configuration space [0, 𝐿]𝑁𝑑 .

2. Define orthogonal directions: Two orthogonal unit vectors, 𝒏̂1 and 𝒏̂2, are randomly

sampled such that 𝒏̂1 · 𝒏̂2 = 0.

3. Construct the grid: A two-dimensional grid of configurations is constructed, centered on

𝑿0. Each grid point is located at:

𝑿𝑝𝑞 = 𝑿0 + 𝑝 𝑃𝑥 𝒏̂1 + 𝑞 𝑃𝑦 𝒏̂2 (3.1)

where (𝑝, 𝑞) ∈ Z2, with 𝑝 spanning 𝑁1 integers and 𝑞 spanning 𝑁2 integers (both ranges

centered on zero). The parameters 𝑃𝑥 and 𝑃𝑦 denote the spatial resolution along each axis.

4. Assign basin labels: For each configuration 𝑿𝑝𝑞 , the corresponding energy minimum

(basin) is identified via energy minimization or solving the ODE.

5. Generate the image: The results are rendered as an 𝑁1 × 𝑁2 pixel image, where each

pixel is colored according to its basin membership. Colors are assigned using the Glasbey

colormap [132] to ensure perceptual distinctiveness between basins.
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3.6.2 Landscape slices

In Fig. 3.5, we produce pictures of 1920 × 1080 pixels that correspond to a rectangle in config-

uration space with side-lengths 12𝜇𝑠 × 6.75𝜇𝑠 (in units of the mean radius 𝜇𝑠 of the small disks).

For Fig. 3.4, and all 𝑁 = 128 cuts in this document, we produce 800 × 800 pictures correspond-

ing to squares in configuration space with side-lengths 0.44𝜇𝑠 × 0.44𝜇𝑠 . This configuration-space

width is chosen so that the 2𝑑 density of basins on the slices would be fairly similar to that of

Fig. 3.5. They are produced using 800 × 800 pictures corresponding to squares in configuration

space with side-lengths 10𝜇𝑠 × 10𝜇𝑠 . The quantitative accuracy measurements are complemented

by direct visualization of basins through two-dimensional slices of configuration space. In Fig. 3.5

we show the same random 2𝑑 slice, where each pixel on a grid is used as an initial condition for

steepest descent and each basin is represented by a unique color, comparing CVODE and FIRE.

Minima are matched across the two slices based on the metric distance between their locations

(after rattler removal). Even in moderate dimension, (𝑁 − 1)𝑑 = 30, FIRE scrambles the basins,

creates discontinuities in their shapes, and alters their sizes. The apparent roughness of basins in

2𝑑 cuts was previously argued to be a feature of basins and an indicator of the fractal nature of

their geometry [23, 28, 89]. These features are in fact artifacts of inaccurate noiseless relaxations

that map points to the wrong basins of attraction.3

In Figs. 3.4(𝑐)–(𝑓 ), we show slices at 𝑁 = 128, where the accuracies of FIRE and L-BFGS are

essentially zero. These slices reveal a much starker contrast between methods: FIRE and L-BFGS

turn the whole landscape into an unrecognizable collection of confetti-like, largely disconnected

basins. In fact, not a single pixel of the slices obtained with these optimizers falls into the correct

basin. The GD slice still looks reasonably smooth but displays large regions of incorrectly tagged

basins.

To demonstrate that these findings are robust, Fig. 3.6 shows slices for a smaller system (𝑁 = 8)
3This is reminiscent of fractals generated by the iterative Newton-Raphson method on equations that yield roots

of unity [133].
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Figure 3.5: Slicing the energy landscape. 1350× 2400 pixels in a random 2𝑑 plane in the configuration
space of 𝑁 = 16 disks. At each pixel, we use CVODE (top) and FIRE (bottom), to identify which basin of
attraction it belongs to. Each basin is uniquely encoded by one color across both panels.

where optimizer accuracies are higher (about 70% for FIRE and 40% for L-BFGS). Even at this

small 𝑁 , there are noticeable basin deformations, and optimizers make basins appear less regular,
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more “fractal-like.” Fig. 3.7 presents additional slices at 𝑁 = 128 with different random seeds,

confirming that the basin scrambling is generic rather than an artifact of a particular choice of

slice.

CVODE(a) FIRE(b) L-BFGS(c)

Figure 3.6: Small-system slices. Random 2𝑑 slice of the energy landscape of 𝑁 = 8 particles at 𝜙 = 0.9
using (𝑎) CVODE, (𝑏) FIRE, and (𝑐) L-BFGS. Minima are matched across slices then color-coded.

3.6.3 Dependence on Packing Fraction

The results presented above were obtained at 𝜙 = 0.9, well above the jamming transition. To

demonstrate that these findings are generic to the overcompressed regime, we examine how ac-

curacy depends on packing fraction. In Fig. 3.8, we present results at 𝜙 = 0.86, closer to the

jamming point. Panel (𝑎) shows that accuracies follow the same trends as at 𝜙 = 0.9: exponen-

tially decaying accuracies for optimizers. Panel (𝑏) confirms that time scalings remain O(𝑁 3/2)

for optimizers and O(𝑁 5/2) for CVODE. The landscape slices in panels (𝑐)–(𝑒) are qualitatively

similar to those at 𝜙 = 0.9. We do not consider GD at this packing fraction due to its prohibitive

cost at large 𝑁 .

Fig. 3.9 examines accuracy as a continuous function of 𝜙 for fixed system sizes 𝑁 = 16 and

𝑁 = 32. The data is obtained by comparing configurations obtained by optimization to CVODE

solutions for the same points, ignoring fluid states. Both L-BFGS and FIRE show degradation of
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Figure 3.7: Gallery of energy landscape slices. Slices of the landscape of 𝑁 = 128 particles at 𝜙 = 0.9,
obtained with the same parameters as in Fig. 3.4 but with different random seeds.
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Figure 3.8: Optimizers: fast but inaccurate at every 𝜙 . (𝑎) Average accuracy of algorithms compared
to low-tolerance CVODE, computed over 104 random uniform initial conditions. Error bars are 95% con-
fidence intervals, obtained using a Clopper-Pearson estimator. Dashed lines are exponential fits, and the
long-dashed line is a stretched exponential fit. (𝑏) Corresponding scalings of the average computation
times, with error bars obtained from a Student-T 95% confidence interval. (𝑐)–(𝑒) 800 × 800-pixel slices
for 𝑁 = 128 particles for (𝑐) CVODE, (𝑑) FIRE, and (𝑒) L-BFGS.

accuracy as the jamming point is approached from above.

To illustrate the effect of density on basins by reproducing the cuts from Fig. 3.4 at several

𝜙 , but using the same relative coordinates {𝒓𝑖/𝐿}𝑖=1..𝑁 and the same size polydispersity up to a

global factor on all diameters, so that the slices correspond to the same initial point positions but

different global dilations of the system. The results are shown in Fig. 3.10. In this figure, colors
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Figure 3.9: Optimizer accuracy dependence on volume fraction. Accuracy of (𝑎) L-BFGS and (𝑏)
FIRE optimizers compared to high-precision CVODE solutions as a function of volume fraction 𝜙 . Data
points show the fraction of random initial conditions that yield identical minima to the CVODE reference,
ignoring fluid states, for system sizes𝑁 = 16 (blue circles) and𝑁 = 32 (orange circles). Solid lines represent
linear regression fit guidelines. Error bars are Clopper-Pearson 95% confidence intervals.

are not matched across slices as minima move across densities, and black indicate non-jammed

(fluid) states. Going from 𝜙 = 0.828 to 𝜙 = 0.86, we show that the configuration space goes

from being mostly made of fluid states and sparsely populated by basins to being tiled entirely by

basins, at a packing fraction 𝜙 ≈ 0.84 comparable to the final plateau from Fig. 3.3 for 𝑁 = 128.

3.7 Discussion

This chapter establishes that commonly used optimizers in the jamming community—particularly

FIRE and L-BFGS—fail catastrophically at the fundamental task of basin identification as system

size increases. We demonstrated that their accuracy decays exponentially with particle number,

dropping to near zero for systems with more than approximately 64 particles. At 𝑁 = 128, not a

single point in representative two-dimensional slices of configuration space was mapped to the

correct basin by these methods.

A key insight enabling these findings is moving away from the false frame of basin identifi-

cation from an optimization problem to an ODE integration problem. While the jamming com-

munity has historically conflated energy minimization with solving the steepest descent equa-
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ϕ = 0.828(a) ϕ = 0.83(b) ϕ = 0.835(c) ϕ = 0.84(d)

ϕ = 0.845(e) ϕ = 0.85( f ) ϕ = 0.86(g) ϕ = 0.9(h)

Figure 3.10: Density and landscape slices. Slices of the energy landscape for 𝑁 = 128 and at 𝜙 equal to
(𝑎) 0.828, (𝑏) 0.830, (𝑐) 0.835, (𝑑) 0.84, (𝑒) 0.845, (𝑓 ) 0.85, (𝑔) 0.86, (ℎ) 0.9. Individual basins are encoded
by colors, while liquid states are shown as black pixels.

tion, systematically benchmarking ODE solvers revealed that CVODE, an adaptive implicit BDF

method, offers the best time-for-error trade-off. Crucially, CVODE (and other production grade

ODE solvers) provides explicit control over numerical accuracy through its tolerance parameters,

and maintains reliable performance even at looser tolerances—a property absent from optimizers,

whose errors cannot be systematically reduced without fundamentally changing the algorithm.

While CVODE incurs greater computational cost per minimization—scaling as O(𝑁 5/2) com-

pared to O(𝑁 3/2) for optimizers—this cost is necessary for reliable basin identification. Adaptive

gradient descent can achieve comparable accuracy but only with prohibitively small step sizes

that render it impractical for large systems.

We further showed that optimizer errors introduce systematic biases, including shifts in the

estimated jamming transition density and alterations to the distribution of minimum energies.

The shift in the jamming point is relevant to get a precise estimate of critical exponents.

The present analysis focused on a single metric: the accuracy of assigning configuration-
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space points to their correct basins of attraction. The two-dimensional slices presented in this

chapter reveal that the apparent fractal roughness of basin boundaries, previously argued to be

an intrinsic geometric feature, is in fact an artifact of optimizer-induced misattribution. With

accurate ODE integration, basins appear considerably smoother. This observation raises a natural

question: what is the true geometry of these basins of attraction? We address this question in the

following chapter.
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4 | Geometry of basins

Distress not yourself if you cannot at first understand the deeper mysteries of

Spaceland. By degrees they will dawn upon you.
— Edwin A. Abbott, Flatland

4.1 Introduction

The previous chapter established that commonly used optimizers fail catastrophically at basin

identification as system size increases, and that accurate mapping of basins requires proper in-

tegration of the steepest descent ordinary differential equation. The two-dimensional slices pre-

sented there revealed a striking visual contrast: basins that appear rough and fragmented when

mapped with optimizers become smooth and well-defined when mapped with CVODE. This ob-

servation motivates the central question of the present chapter: what is the true geometry of

basins of attraction in the energy landscape of soft sphere packings?

The question of basin geometry connects to a broader theme in the study of complex sys-

tems: the role of fractality. Fractal basin boundaries are well-established in nonlinear dynamical

systems [58–61], where they imply that arbitrarily small perturbations can redirect a system to

a qualitatively different attractor.

In the study of glasses and jammed packings, various forms of fractality have been dis-

cussed. Mean-field theories predict a hierarchical organization ofmetastable states in the Gardner
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phase [82], and the paths traced by relaxation dynamics have been argued to exhibit fractal struc-

ture [29, 35, 85]. More directly relevant to the present work, several studies have suggested that

the basins of attraction themselves may be fractal objects [23, 28, 36, 94, 95]. Evidence cited for

this claim includes the apparent roughness of basin boundaries in low-dimensional slices [23, 28],

power-law distributions of basin intersection lengths [95], and scale-free distributions of basin

volumes [36, 94]. Similar claims have appeared in the context of neural networks [89, 90] and

constraint satisfaction problems [91, 92].

However, a number of prior studies of potential energy landscapes share a common method-

ological feature: they relied on optimizers rather than solving the steepest descent ODE. As we

demonstrated in Chapter 2, such optimizers introduce systematic errors in basin identification

that grow with system size. This raises a natural concern: could there be a case in where a claim

about the geometry or reported fractality be an artifact of the optimizer mapping rather than a

genuine geometric property of the landscape?

In this chapter, we demonstrate that for soft sphere packings, the answer is yes: apparent

fractality in basin geometry can be an artifact of optimizer errors rather than a genuine landscape

property.

The chapter is organized as follows. Section 4.2 analyzes the distribution of chord lengths

obtained from random line intersections with basins, while Section 4.3 computes box-counting

dimensions from two-dimensional slices. Section 4.4.1 turns to full-dimensional measurements

through survival probabilities that quantify how far one can perturb a configuration before leav-

ing its basin. Finally, Section 4.5 examines the arrangement of neighboring basins in configu-

ration space. Throughout, we compare results obtained with CVODE against those from FIRE

and L-BFGS, demonstrating that the choice of basin-mapping method fundamentally alters the

measured geometry and produces apparent fractal behavior that is not intrinsic to the landscape.
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4.2 Line Cuts

4.2.1 Method

To characterize basin geometry through low-dimensional intersections, wemeasure how random

one-dimensional line segments intersect with basins of attraction in configuration space. The

procedure proceeds as follows:

1. Random Configuration and Line Selection. A configuration is selected uniformly at

random, followed by sampling a random direction uniformly tomake a line. On the selected

line, a segment is defined symmetrically around the starting configuration, with a total

length 𝐿𝑆 ≈ 10𝜇𝑠 for 𝑁 = 16, comparable to the sidelengths of the two-dimensional slices

shown in Fig. 3.5.

2. Discretization and Basin Tagging. The segment is divided into 106 regularly spaced

points, which serve as initial conditions. Each point is tagged according to the basin it falls

into upon minimization.

3. Boundary Identification. From the discretized basin map, all pairs of neighboring pixels

falling into distinct basins are identified.

4. Boundary Refinement. At each such boundary pair, a new collection of points is defined

on the line with a resolution 102 times finer, linking the two neighboring pixels. Optimiza-

tions are performed at these new points to better resolve the junction between basins and

potentially uncover new basins.

5. Basin Length Reconstruction. The intersection lengths ℓ𝑖 𝑗 between basins and the line

are reconstructed using both resolution levels.
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This adaptive zooming approach bypasses the limitation that an enormous number of reg-

ularly spaced points would otherwise be needed to adequately sample the broad distribution of

intersection lengths. The base resolution before zooming is approximately 1000 times finer than

that of the two-dimensional slices, and the zoomed resolution is thus 105 times finer. Although

selective zooming at junctions could in principle introduce biases, empirical checks confirm that

no new basins appear within the bulk of existing basins when switching to finer scales, indicating

that basins are sufficiently regular to avoid measurable bias from this procedure.

4.2.2 Results and Discussion

The distribution 𝑝 (ℓ) of intersection lengths across a collection of random segments is shown in

Fig. 4.1(𝑎) for both CVODE and L-BFGS minimization methods. While both methods produce a

power-law-like decay, the distributions differ between the two approaches. L-BFGS overestimates
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Figure 4.1: Linear intersects of basins. (𝑎) Intersection lengths distributions obtained with L-BFGS
(blue triangles) and CVODE (green squares) over 10 lines of 106 pixels for 𝑁 = 16, in log scales. A dashed
line indicates 1/ℓ behavior. (𝑏) CDF of the distribution of log ℓ obtained with CVODE by zooming 100×
on each basin boundary found from panel (𝑎). The dashed black line is a truncated Gaussian fit. Inset:
Corresponding histogram of the pdf, the dashed line shows a kernel regression.
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the prevalence of small basins and consequently the decay exponent of the distribution, consistent

with the “confetti” fragmentation observed in Fig. 3.4(𝑐)–(𝑓 ).

Taking advantage of CVODE’s accuracy, we investigate the true distribution of line intersec-

tions. Given the broad nature of this distribution, we focus on the distribution of the logarithm

of lengths, 𝑝 (log ℓ), presented in Fig. 4.1(𝑏). The results demonstrate that this distribution is

normal, indicating that the intersection lengths themselves are log-normally distributed.

This finding connects with prior results on basin volumes, which have been argued to fol-

low log-normal distributions in soft sphere systems based on both numerical measurements [17,

30, 134] and theoretical arguments [135]. The volume of the intersection of a basin with an 𝑛-

dimensional affine space may be approximated by a product of𝑛 independent log-normal lengths,

yielding a log-normal distribution of volumes.

The log-normal distribution invalidates claims that basin intersection lengths are scale-free [95].

The power-law tail with exponent −1 observed in some studies arises from the asymptotic be-

havior of log-normal distributions with large variances [136]. Similarly, claims of scale-free dis-

tributions of basin volumes [36, 94] which contradict direct numerical measurements [17, 30,

134] likely stem from inadequate sampling of a log-normal distribution where only the tail was

observed, a common issue with small sample sizes [137].

Notably, the peak in the distribution of log-lengths obtained with CVODE is already visible

before the adaptive refinement step, confirming that the zooming procedure helps resolve single-

pixel intersections but does not artificially introduce the observed peak.

4.3 Box-Counting Dimension of Basin Boundaries

To complete the data on distributions of 1𝑑 intersection lengths between random lines and basins,

we discuss a 2𝑑 measure of the fractal dimension of intersections of basins with random 2𝑑 planes,

such as the slices of Fig. 3.5. To quantify the fractal dimension of basin boundaries, we rely on
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the Minkowski-Bouligand, or “box-counting” dimension [138], 𝑑𝐵 . The box-counting dimension

is defined as

𝑑𝐵 =
log(𝑁 (ℓ𝐵))

log(ℓ𝐵)
, (4.1)

where 𝑁 (ℓ𝐵) is the number of cubic boxes with sidelength ℓ𝐵 that are needed to cover a shape.

For non-fractal shapes 𝑑𝐵 = 1, while fractal shapes have 𝑑𝐵 > 1.

4.3.1 Measurement Procedure

Starting from a 2𝑑 slice of configuration space such as Fig. 3.5 of the main text, we crop the image

to the smallest bounding box that encloses the basin boundary, with a padding of 𝐿/16 to mitigate

boundary effects, then for the top 𝑛𝐵 basins we create 𝑛𝐵 binary map pictures with values 1 in

the basin and 0 elsewhere. For each picture we perform the following procedure

1. We then feed each resulting picture into the porespy package [139] to count 𝑁 (ℓ𝐵), defined

here as the number of boxes that contain pixels both inside the basin and outside the basin

2. To estimate 𝑑𝐵 , we perform a linear fit on the log(𝑁 (ℓ𝐵)) versus log(ℓ𝐵) data, excluding the

largest scales so as to mitigate finite-size effects due to the finite slice size. We thus measure

a fractal dimension for the selected basin

4.3.2 Results

In Fig. 4.2(𝑎), we show Gaussian kernel density estimates (KDE) obtained from the histograms

of 𝑑𝐵 for each method. We show that the mode of the distribution is close to unity (𝑑𝑚𝑜𝑑𝑒
𝐵

∈

[1.05; 1.15]) when using CVODE or GD, but is shifted to significantly higher values (𝑑𝑚𝑜𝑑𝑒
𝐵

∈

[1.3; 1.4]) when using FIRE or L-BFGS.

To estimate the effects of finite resolution, in Fig. 4.2(𝑏), we plot the average box counting

dimension ⟨𝑑𝐵⟩ calculated for the 𝑛𝐵 largest basins, against 𝑛𝐵 (error bars are 95% confidence
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(d)(c)

(b)(a)

Figure 4.2: Box-counting dimension. (𝑎) Gaussian kernel density estimate of the PDF of the box
counting dimension 𝑑𝐵 from top 10 largest basins for 𝑁 = 128 and 𝜙 = 0.9, and (𝑏) corresponding average
box counting dimension estimated from the top 𝑛𝐵 largest basins. In (𝑐), (𝑑), we show the same plots for
𝑁 = 128 and 𝜙 = 0.86.
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𝜙 𝑑𝐵 (L-BFGS) 𝑑𝐵 (FIRE) 𝑑𝐵 (CVODE) 𝑑𝐵 (GD)
0.9 1.34 ± 0.05 1.24 ± 0.09 1.17 ± 0.05 1.16 ± 0.06
0.86 1.40 ± 0.09 1.33 ± 0.09 1.10 ± 0.08 N/A

Table 4.1: Box-counting dimensions. Table of 𝑑𝐵 values (with bootstrapped 95% confidence intervals)
estimated from the 10 largest basins in a slice, for each method.

intervals calculated by bootstrap). We show that as smaller basins are included in the average,

the estimated fractal dimension decreases significantly for FIRE and L-BFGS, while it essentially

plateaus for ODE solvers. This is due to the finite resolution of slices: as we include smaller basins,

the scale of the pixel size begins to dominate. As a result, for optimizers, 𝑑𝐵 is underestimated

when 𝑛𝐵 is large.

We repeat the same measurement at 𝜙 = 0.86, save for GD which becomes prohibitively

expensive near jamming. The corresponding plots are shown in Fig. 4.2(𝑐) and (𝑑) (the slices

used for this measurement are shown in 3.8). The average 𝑑𝐵 for 𝑛𝐵 = 10 are reported in Table 4.1.

Basins look more fractal (𝑑𝐵 ≳ 1.25) when identified with optimizers rather than ODE solvers

(𝑑𝐵 ≈ 1.1). As the jamming point is approached, the fractal dimension estimated with CVODE

slices does not change significantly, while it becomes larger for L-BFGS and FIRE. Like line mea-

surements, these results suggest that individual basins do not get intrinsically more fractal near

jamming, implying this is just another mirage appearing in optimizer measurements. In particu-

lar, the analogy proposed in past work between basins of attraction and Apollonian gaskets [94]

quoted a fractal dimension close to 1.3, which is close to what optimizers report but significantly

larger than the CVODE values.
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4.4 Survival Probability

4.4.1 Method

The survival probability measures the fraction of configurations that, after being displaced by a

distance𝑅, remainwithin their original basin of attraction. Themeasurement proceeds as follows:

1. Reference Point Selection. A point 𝑿 is sampled uniformly at random from the full con-

figuration space. The associated minimum is identified by solving steepest descent using

either CVODE or an optimizer.

2. Perturbation Sampling. A set of 𝑛 random perturbations is generated, each displacing

𝑿 by a fixed distance 𝑅. We use Muller’s method [140]: draw an isotropic Gaussian vector

g ∼ N(0, 𝐼𝑑𝑁 ), then project onto the hypersphere surface:

𝑿𝑖 = 𝑿 + 𝑅 · g𝑖
∥g𝑖 ∥

, (4.2)

for 𝑖 = 1, . . . , 𝑛. This generates perturbation directions uniformly on the (𝑑𝑁−1)-dimensional

unit hypersphere.

3. Basin Identification. Each perturbed configuration is minimized using the same method

employed for the reference point. For periodic systems, structure comparison accounts

for translational drift by aligning coordinates, then computing particle-wise displacements

under periodic boundary conditions:

Δr𝑖 =
(
r(𝑎)
𝑖
− r(𝑏)

𝑖

)
mod 𝐿, (4.3)

where displacements exceeding 𝐿/2 are wrapped: Δr𝑖 → 𝐿 − Δr𝑖 . Rattlers (mechanically

unstable particles with fewer than 𝑑 + 1 contacts) are excluded from the comparison. Two
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structures match if max𝑖 ∥Δr𝑖 ∥ < 𝜖tol with 𝜖tol = 10−2.

4. Survival Probability. The survival probability 𝑝in(𝑅) for this reference point is the frac-

tion of perturbed configurations returning to the same minimum:

𝑝in(𝑅) =
1
𝑛

𝑛∑︁
𝑖=1

1[sample 𝑖 returns to same basin] . (4.4)

5. Ensemble Averaging. The procedure is repeated for𝐾 independent reference points sam-

pled from configuration space. The ensemble-averaged survival probability is then

𝑃in(𝑅) = ⟨𝑝in(𝑅)⟩𝑿 , (4.5)

where the average is taken over all reference points.

Since the number of perturbations per reference point satisfies 𝑛 ≫ 𝐾 , the statistical uncer-

tainty is dominated by variation across reference points rather than sampling noise within each

basin. Accordingly, error bars are computed using BCa (bias-corrected and accelerated) boot-

strap [141] with 10,000 resamples over the 𝐾 reference points, yielding 95% confidence intervals

for the mean survival probability.

4.4.2 Fractality

To demonstrate that the survival probability can detect fractality when present, consider a fractal

object 𝑆 with dimension 𝑑 𝑓 embedded in 𝐷-dimensional space. When a (𝐷 − 1)-dimensional

hypersphere of radius 𝑅 intersects 𝑆 , the intersection generically has dimension 𝑑 𝑓 − 1.

The survival probability 𝑃in(𝑅) measures the fraction of the hypersphere surface occupied by

𝑆 . The (𝐷 − 1)-dimensional hypersphere has surface measure scaling as 𝑅𝐷−1, while the intersec-

tion with the fractal has (𝑑 𝑓 − 1)-dimensional measure scaling as 𝑅𝑑𝑓 −1. The survival probability
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therefore scales as

𝑃in(𝑅) ∼
𝑅𝑑𝑓 −1

𝑅𝐷−1 = 𝑅𝑑𝑓 −𝐷 . (4.6)

For a fractal object with 𝑑 𝑓 < 𝐷 , this yields a power-law decay with exponent 𝑑 𝑓 − 𝐷 < 0. For

example, the Sierpinski carpet in 𝐷 = 2 has 𝑑 𝑓 = log 8/log 3 ≈ 1.893, predicting 𝑃in(𝑅) ∼ 𝑅−0.107.

We verify this prediction numerically in Fig. 4.3, where the measured survival probability follows

the expected power law over several decades.

10−6 10−5 10−4 10−3 10−2 10−1

R

100

4×10−1

6×10−1

P i
n(

R
)

R −0.107

Figure 4.3: Survival probability for the Sierpinski carpet. The survival probability 𝑃in(𝑅) as a func-
tion of perturbation radius𝑅, averaged over 100 reference points sampled uniformly from inside the carpet.
The dashed line shows the predicted scaling 𝑃in(𝑅) ∼ 𝑅𝑑𝑓 −𝐷 with 𝑑𝑓 −𝐷 = log 8/log 3− 2 ≈ −0.107. Error
bars are Clopper-Pearson 95% confidence intervals.

To generate Fig. 4.3, we construct a Sierpinski carpet with 50 iterations and sample 100 ref-

erence points uniformly inside the carpet via rejection sampling. For each reference point and

each of 86 radii (logarithmically spaced from 10−6 to 10−1), we draw 10,000 random perturbations

uniformly on a circle of that radius and check whether they fall inside the carpet. The survival

probability is averaged over all reference points, with Clopper-Pearson intervals computed from

the binomial counts.
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Figure 4.4: Survival (𝑎) Survival from a random point in the landscape of 𝑁 = 1024 disks, in log-log
scale. Solid black lines are stretched-exponential fits for CVODE and FIRE. Dashed gray line: saturating
power-law fit to L-BFGS. Error bars are BCa bootstrap 95% confidence intervals [141]. (𝑏) Same curve at
𝜙 = 0.85. Gray lines are power-law fits for FIRE and L-BFGS. The black line is a stretched-exponential fit
to CVODE.

We note that the survival probability could serve as a measure of basin stability, analogous

to the uncertainty exponent approach developed by Grebogi et al. [58–61] for characterizing

sensitivity to initial conditions near fractal basin boundaries (see Section 1.1.1). However, an

important distinction is that survival probability probes stability in the bulk of basins rather than

near their boundaries. This difference may be relevant for certain systems. It is also important

to note that the boundary-detection method of Grebogi et al. scales as 𝑂 (𝑁𝐷) where 𝐷 is the

dimension of phase space, making it prohibitively expensive in high dimensions. In contrast,

the survival probability measurement relies on Monte Carlo sampling, for which the number of

samples required to achieve a given statistical precision is independent of dimension.
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4.4.3 Method Dependence of Survival Curves

Figure 4.4(𝑎) compares survival probability curves for L-BFGS, FIRE, and CVODE at 𝜙 = 0.9.

For a system of 𝑁 = 1024 particles, we sample reference points uniformly from configuration

space—13 for CVODE and 43 for the optimizers and around each reference point we sample 1000

perturbations on each of 30 nested hyperspheres of increasing radius.

The results reveal a method dependence. Optimizers consistently escape from the basin at

much smaller displacements than CVODE, even at this high packing fraction. L-BFGS is particu-

larly sensitive, showing significant basin escape even for minute perturbations.

Panel (𝑏) shows the same measurement closer to jamming at 𝜙 = 0.85. Here, both L-BFGS

and FIRE display power-law decays: straight lines in log-log scale which would suggest fractal

basin boundaries. However, CVODE tells a different story: it reveals basins that extend over

much larger distances, with survival probability following a stretched exponential form 𝑃in(𝑅) =

exp (−𝐶𝑅𝛼 ). This functional form has a characteristic length scale, indicating that the basins are

not scale-free. The apparent fractality observed with optimizers is therefore another artifact of

the minimization method, not an intrinsic property of the energy landscape.

4.4.4 Survival Probability Across Packing Fractions

Having established that the choice of minimization method significantly affects survival proba-

bility measurements, we now examine how this method dependence evolves as the system ap-

proaches jamming. Figure 4.5 shows survival curves across a range of packing fractions for each

method.

For these measurements, we use 13 random reference configurations for CVODE and 43 for

FIRE and L-BFGS. The larger number of reference points for the optimizers is necessary because

their lower survival probabilities lead to higher variance at the same confidence level. Around

each reference point, we sample 1000 perturbations at each of 30 different radii 𝑅, measuring the
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Figure 4.5: Survival probability approaching jamming. Survival probability as a function of pertur-
bation radius 𝑅 for several packing fractions approaching the jamming transition, shown in log-log scale.
Panels show results for (𝑎) CVODE, (𝑏) FIRE, and (𝑐) L-BFGS. Error bars are BCa bootstrap 95% confi-
dence intervals [141].

survival probability 𝑃in(𝑅) as the fraction of perturbed configurations that return to the same

minimum.

The results reveal that the discrepancy betweenmethods growsmore pronounced as jamming

is approached (𝜙 𝐽 ≈ 0.842). At packing fractions as high as 𝜙 = 0.85, the optimizers already ex-

hibit power-law-like decays, appearing as straight lines in log-log scale while CVODE maintains

stretched-exponential behavior with a clear characteristic length scale.

4.4.4.1 Fitting Methodology

To quantify whether the survival curves exhibit scale-free (fractal) or characteristic-scale behav-

ior, we fit each curve to two functional forms. The first is a stretched exponential,

𝑃in(𝑅) = exp
(
−

(
𝑅

𝑅se

)𝛼 )
, (4.7)

where 𝑅se is a characteristic length scale and 𝛼 is the stretching exponent. This form describes

basins with a well-defined size scale.
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The second is a saturating power law,

𝑃in(𝑅) =
𝐴(

1 + 𝑅
𝑅pl

)𝛽 , (4.8)

where 𝐴 is a saturation factor, 𝑅pl sets the crossover scale, and 𝛽 is the power-law exponent in

the tail. This form captures scale-free behavior at large 𝑅, which would indicate fractal basin

structure.

We perform weighted nonlinear least-squares fits in log space, with weights 1/𝛿2
𝑖 where 𝛿𝑖 ≡

Δ𝑖/𝑃in(𝑟𝑖) and Δ𝑖 is the width of the 95% confidence interval at each point. When the Central

Limit Theorem applies and the error can be assumed Gaussian, Δ𝑖 ∝ 𝜎 (𝑟𝑖) where 𝜎 (𝑟𝑖) is the

variance at each point. This weighting ensures that the fits accurately capture the tail behavior,

which is most diagnostic for distinguishing between the two functional forms.

4.4.4.2 FitQuality Comparison

To systematically compare fit quality across methods and packing fractions, we compute the

difference in weighted residual sum of squares,

ΔWRSSlog ≡WRSSpower law −WRSSstretched exp. (4.9)

Negative values indicate that the power law provides a better fit; positive values favor the stretched

exponential.

We assess the robustness of this comparison using leave-one-out (jackknife) resampling [141].

For each resampled ensemble, we compute ΔWRSSlog and determine the proportion 𝑃pl of en-

sembles for which the power law fits better, with 95% Clopper-Pearson confidence intervals. The

results are shown in Figure 4.6(𝑎).

The results are clear: L-BFGS yields 𝑃pl ≈ 1 at all packing fractions, indicating that power-law
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behavior appears regardless of density. FIRE shows 𝑃pl ≈ 0 at high𝜙 but transitions to 𝑃pl ≈ 1 near

jamming, suggesting emergent power-law behavior as 𝜙 → 𝜙 𝐽 . In contrast, CVODE maintains

𝑃pl < 0.5 at all packing fractions, with no systematic trend as jamming is approached.

These results demonstrate that the apparent power-law behavior in survival curves, and by

extension, the apparent fractality of basins, can appear as an artifact of the minimization method

rather than an intrinsic property of the energy landscape.

Figure 4.6(𝑏)–(𝑓 ) reports the fitted parameters for both models across all methods and pack-

ing fractions. Notably, the characteristic scale 𝑅se from stretched-exponential fits with CVODE

(green symbols in panel 𝑏) remains approximately constant as jamming is approached, while the

corresponding L-BFGS values (blue symbols) become vanishingly small. This provides additional

evidence that the basins are well-behaved shapes with finite, 𝜙-independent length scales when

measured correctly.

4.5 Basin Arrangement

We now turn to how the choice of minimization method affects the perceived arrangement of

basins in configuration space, following the approach of Ref. [33]. We start with 13 random initial

configurations uniformly sampled from phase space, For each configuration, we use CVODEwith

rtol = 10−11 and atol = 10−12 (one order of magnitude below the values in Table C.1) to locate

the corresponding minimum within its basin of attraction.

For each of these 13 minima, we then apply 1000 random kicks of length 𝑅, choosing the

direction uniformly in space, we do this for 60 𝑅 values. Of these 60 values, 10 are sampled

uniformly in log space from 0.1 to 1 and 50 uniformly from 1 to 𝑅 = 𝐿. In 4.7 we only present

the data up to 𝑅 = 𝐿/2, confining ourselves to observe differences in intermediate kick size

regimes. After each kick, we minimize the system using CVODE, FIRE, and L-BFGS, employing

the parameters listed in Tables C.1, C.2, and C.3, respectively. Finally, excluding any case in which
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Figure 4.6: Fit quality comparison. (𝑎) Proportion 𝑃pl of leave-one-out ensembles for which the power-
law fit outperforms the stretched exponential, as a function of packing fraction. Panels (𝑏)–(𝑓 ) show the
fitted parameters for each model and method: (𝑏) 𝑅se, (𝑐) 𝛼 , (𝑑) 𝐴, (𝑒) 𝑅pl, and (𝑓 ) 𝛽 .
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Figure 4.7: Distance between neighboring minima. Average normalized distance 𝑑min between an
initial minimum and minima reached after perturbations of size 𝑅, for 𝑁 = 1024 particles. Inset: relative
error in 𝑑min for optimizers compared to CVODE, shown on a logarithmic scale.

the new minimum coincides with the original one, we compute the normalized metric distance

between the new minimum𝑀′ and the original one𝑀 ,

𝑑𝑚𝑖𝑛 (𝑀,𝑀′) ≡
1

2⟨𝑅𝑖⟩

√︄∑︁
𝑖< 𝑗

(
𝑪𝑖 𝑗 − 𝑪′𝑖 𝑗

)2
(4.10)

with ⟨𝑅𝑖⟩ the average particle radius and 𝑪𝑖 𝑗 , 𝑪′𝑖 𝑗 are the “stable contact vectors” between particles

𝑖 and 𝑗 in minima𝑀 and𝑀′, respectively. These contact vectors are defined as

𝑪𝑖 𝑗 = 𝒓𝑖 𝑗1(𝑟𝑖 𝑗 ≤ 𝑅𝑖 + 𝑅 𝑗 ), (4.11)

that is, the distance vector if the particles are in contact, and 0 otherwise. This definition ensures

that the measured distance is unambiguous in spite of the presence of rattlers and of translational

symmetry.

Figure 4.7 shows that for 𝑁 = 1024, the average normalized metric distance 𝑑𝑚𝑖𝑛 between
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original and neighboring minima is systematically shifted when using optimizers compared to

CVODE, with relative deviations of 10 to 80% at intermediate perturbation radii𝑅, with optimizers

reaching further than than CVODE, including a illusory “hump” with L-BFGS. This suggest that

measured basin organization is also affected by minimization method

4.6 Discussion

While Chapter 2 established that optimizers fail at basin identification with increasing system

size, this chapter demonstrates that these failures produce systematic biases in measured basin

geometry that are both quantitative and qualitative. The results presented here show that appar-

ent fractal properties of basins of attraction in soft sphere packings can be attributed to optimizer

errors rather than genuine features of the energy landscape.

The evidence is consistent across measurement approaches. Box-counting dimensions of

basin boundaries drop from 𝑑𝐵 ≈ 1.3–1.4 with optimizers to 𝑑𝐵 ≈ 1.1 with CVODE, quantify-

ing the roughness apparent in the slices in Chapter 2. Survival probabilities exhibit stretched-

exponential decay with CVODE, indicating basins with finite length scales, whereas optimizers

produce power-law decays that would incorrectly suggest scale-free, fractal structure. Finally,

measurements of basin arrangement show that optimizers systematically overestimate the dis-

tance between neighboring minima, distorting the perceived organization of configuration space.

While the majority of our results are in the overjammed regime, the discrepancy between

methods grows more pronounced in survival probability measurements as the jamming transi-

tion is approached, including qualitative changes in the functional form. Near jamming, optimiz-

ers produce increasingly fragmented basin maps while CVODE reveals basins that remain geo-

metrically well-behaved. The characteristic length scale extracted from CVODE persists across

packing fractions, indicating that basin geometry does not undergo a fundamental change near

jamming—contrary to what optimizer-based measurements would suggest.
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One note regarding methodology: while we used the survival probability primarily as a tool

to distinguish fractal from non-fractal basins, it can also measure the fractal dimension of a basin

directly. Unlike the boundary-detection methods of Grebogi et al. [58, 59], which scale as𝑂 (𝑁𝐷)

in the dimension 𝐷 of configuration space, survival probability relies on Monte Carlo sampling

whose computational cost is dimension independent. This may make it a valuable tool for ex-

tracting fractal dimensions to quantify global stability of basins in high-dimensional systems,

although this direction is not explored deeply in this thesis.

The results of this chapter and the preceding one establish a clear methodological prescrip-

tion: reliable characterization of basin geometry requires solving the steepest descent ODE with

appropriate numerical methods rather than relying on optimizers. For soft sphere packings above

the jamming transition, this reveals basins that are smooth, log-normally distributed in size, and

possess well-defined characteristic length scales. This builds a case to re-verify previous studies

which used optimizers[29, 35, 36] to extract geometric information.
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5 | Sampling uniformly in a

high-dimensional basin

The total unsuitability of the harmonic mean estimator should have been apparent

within an hour of its discovery
— Radford Neal, Blog

5.1 Introduction

As discussed in Section 1.2.3, the volume of a basin can be expressed as an integral over config-

uration space weighted by an indicator function. Evaluating this indicator requires solving the

steepest descent equation from each sampled configuration—a computationally expensive op-

eration that makes direct volume estimation intractable. Moreover, because jammed packings

possess an astronomical number of minima, individual basins occupy vanishingly small fractions

of configuration space, rendering naive sampling over the full phase space hopeless.

This chapter describes a method that circumvents these difficulties by generating uniform

samples directly within a basin of interest using Markov Chain Monte Carlo (MCMC) that was

developed by Frenkel and collaborators [16–18, 30]. Rather than estimating volumes by counting

hits from global sampling, we constrain random walkers to remain inside a single basin and use
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free energy estimation techniques to reconstruct the absolute volume. The central challenge in

high dimensions is that basins concentrate their volume in narrow, elongated regions far from

the minimum, causing single random walks to become trapped. We overcome this using parallel

tempering with harmonic biasing potentials: an ensemble of walkers, each confined by springs

of different stiffness, collectively explores all radial regions of the basin while exchanging con-

figurations to maintain ergodicity.

We begin in Section 5.2 by formulating the sampling problem and explainingwhy single-chain

approaches fail in high dimensions. We then introduce parallel tempering and the Multistate

Bennett Acceptance Ratio (MBAR) estimator for free energy differences. Section 5.3 details the

practical implementation: determining the spring constant range, running the parallel tempering

simulation, sampling an inner reference sphere, and combining these elements to estimate the

basin volume.

5.2 Drawing uniform samples from a high-dimensional

basin

As described in Sec. 1.2, the volume of a basin of attraction B𝛼 associated with minimum 𝛼 can

be written as an integral over configuration space:

𝑣𝛼 =

∫
𝑑𝑿 1B𝛼 (𝑿 ), (5.1)

where 1B𝛼 (𝑿 ) is the indicator function that returns 1 if 𝑿 belongs to basin 𝛼 and 0 otherwise.

Evaluating this indicator function requires solving the steepest descent equation from configu-

ration 𝑿 and checking whether the resulting minimum matches 𝑿𝛼
𝐼𝑆
.

The most naive approach to estimating this integral would be to sample uniformly over the

entire configuration space and count the fraction of points that land in basin 𝛼 , 𝑝𝛼 = 𝑛𝛼/𝑁𝑠 ,
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where 𝑛𝛼 is the number of samples landing in basin 𝛼 and 𝑁𝑠 is the total number of samples. The

volume can then be estimated as 𝑣𝛼 = 𝑝𝛼 ·𝑉tot. However, this strategy is hopelessly inefficient for

jammed sphere packings. As discussed in Sec. 1.1.2, the number of minima in these systems is

astronomically large, and correspondingly, individual basin volumes are vanishingly small frac-

tions of the total configuration space. The probability of hitting any specific basin even twice

becomes negligible for systems of even modest size, meaning that it is impossible to estimate 𝑣𝛼

this way.

The approach we take, as briefly introduced in Sec. 1.2.3, is to instead generate samples within

the basin itself using a Markov Chain Monte Carlo (MCMC) walk constrained to remain inside

B𝛼 . The samples generated can then be used to reconstruct the volume through a process we will

discuss in detail below. As an additional benefit, these uniform samples within the basin can also

be used to extract information about the basin structure.

5.2.1 The problem with a single chain

The standard approach to sample uniformly within a basin is to use a Metropolis-Hastings ran-

dom walk. We initialize a walker at some configuration 𝑿0 ∈ B𝛼 , typically at the minimum 𝑿𝛼
𝐼𝑆

itself. At each step 𝑡 , the walker proposes a move to a new configuration:

𝑿 ′ = 𝑿𝑡 + 𝛿𝜼, (5.2)

where 𝜼 is a vector of independent standard normal random variables and 𝛿 is a step size param-

eter that controls the typical displacement. Since we aim to sample uniformly within the basin,

the target distribution is flat and the Metropolis-Hastings acceptance criterion simplifies to:

𝑃accept =


1 if 𝑿 ′ ∈ B𝛼 ,

0 otherwise.
(5.3)
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In other words, the walker accepts any proposed move that remains inside the basin and rejects

moves that would exit it. Checking basin membership requires minimizing from𝑿 ′ and verifying

that the resulting minimum matches 𝑿𝛼
𝐼𝑆
. After sufficient equilibration, random samples 𝑋𝑛 from

the uniform distribution over B𝛼 can be obtained by decorrelating the sequence of configurations

{𝑿𝑡 } .

However, a naive approach using a single such random walk faces fundamental challenges

from high-dimensional geometry. In high dimensions, even convex bodies concentrate their vol-

ume far from the center—a hypercube, for example, has most of its mass in its 2𝑑 corners (see

Figure 5.1). Basins of attraction exhibit similar structure: narrow, elongated regions extending

from a small convex core [21, 27, 30, 142]. A randomwalker becomes trapped in these regions, and

transitioning between them requires traversing the core—an event whose probability decreases

exponentially with dimension. Adequate sampling demands either O(2𝑑) independent walkers

to sample every corner or equivalently long equilibration times for one walker to sample every

corner, rendering direct estimation intractable.

5.2.2 Parallel Tempering

The trapping problem can be circumvented by running multiple random walks simultaneously,

each biased to explore a different radial region of the basin. Instead of a single free walker, we

introduce a collection of walkers tethered to the minimum 𝑿𝛼
𝐼𝑆
by harmonic springs of varying

stiffness 𝑘 . Each walker samples configurations according to a biasing potential

𝑈𝑘 (𝑿 ) =
𝑘

2
��𝑿 − 𝑿𝛼

𝐼𝑆

��2, (5.4)

which confines the walker to a region whose typical distance from the minimum depends on 𝑘 .

A walker with large positive 𝑘 remains tightly localized near the minimum, sampling primarily

the small convex core of the basin. As 𝑘 decreases toward zero, the confining force weakens and
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Figure 5.1: Volume concentration in high-dimensional hypercubes. Top: Visualizations of hypercubes in
𝑑 = 2, 3, 4, and 5 dimensions, with color indicating the radial distribution of volume. As dimensionality
increases, volume shifts from the center (dark) toward the corners (light). Bottom: The relative weight
𝑤 (𝑟 ) of each radial shell—the fraction of total volume contained in a thin spherical shell at distance 𝑟
from the center—for the hypercube (orange) compared to a hyperball (purple). In low dimensions, the
hypercube’s volume peaks near its inscribed sphere, but as 𝑑 grows, the distribution shifts to larger radii
where the corners dominate, illustrating why a random walker in high dimensions becomes trapped in
corners far from the central core. Figure adapted from Ref. [142].
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the walker explores progressively larger distances from the minimum. At 𝑘 = 0, the walker is

completely unbiased and free to explore the entire basin volume including the “tentacles” where

most of the volume resides.

Crucially, negative values of 𝑘 can also be employed. A negative spring constant creates a

repulsive potential that pushes the walker away from the minimum, encouraging exploration of

the outermost regions of the basin where the tentacles extend furthest. By spanning a range of

𝑘 values from large positive (tight confinement) through zero (free exploration) to moderately

negative (outward bias), the ensemble of walkers collectively samples all radial regions of the

basin.

The key ingredient that makes this approach tractable is parallel tempering [143, 144]: peri-

odic exchanges of configurations between walkers with neighboring values of 𝑘 . Consider two

walkers with spring constants 𝑘𝑖 and 𝑘𝑖+1, currently at configurations 𝑿𝑖 and 𝑿𝑖+1. A swap of

their configurations is proposed and accepted with probability

𝑃 (𝑿𝑖, 𝑘𝑖 | 𝑿𝑖+1, 𝑘𝑖+1) = min (1, exp [−Δ𝑈 ]) , (5.5)

where Δ𝑈 = (𝑘𝑖+1−𝑘𝑖)
(��𝑿𝑖 − 𝑿𝛼

𝐼𝑆

��2 − ��𝑿𝑖+1 − 𝑿𝛼
𝐼𝑆

��2) /2 is the change in total biasing energy upon

exchange. This Metropolis-type acceptance criterion is derived by imposing detailed balance on

the transition matrix, ensuring that each walker continues to sample from its target distribution.

In practice, exchanges are attempted simultaneously for all even-indexed pairs (0–1, 2–3, . . .)

or all odd-indexed pairs (1–2, 3–4, . . .), alternating between the two sets [145]. This even-odd

scheme does not satisfy detailed balance for individual pairs, and hence is non-reversible. How-

ever, it does satisfy global balance: the total probability flux into any configuration equals the flux

out at steady state. Global balance suffices to guarantee convergence to the correct equilibrium

distribution while being less restrictive than detailed balance. Saifuddin et al. [146] have also

shown that such non-reversible schemes significantly outperform their reversible counterparts.
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The exchange mechanism solves the trapping problem as follows. When a walker at low 𝑘

becomes stuck in a tentacle far from the center, it can swap configurations with a neighboring

walker at higher 𝑘 that happens to be closer to the core. The low-𝑘 walker then finds itself in a

new region of the basin, having effectively tunneled through the narrow core without actually

traversing it. Meanwhile, the higher-𝑘 walker that received the distant configuration will tend to

drift back toward the center due to its stronger confining potential. Through repeated exchanges

cascading up and down the ladder of 𝑘 values, configurations diffuse efficiently between the core

and the periphery, enabling exploration of the entire basin.

A key advantage of this approach is its favorable scaling with dimension. While direct sam-

plingwould require exponentiallymanywalkers to cover theO(2𝑑) corners of a high-dimensional

basin, the number of replicas needed for parallel tempering grows only roughly linearly with

dimension 𝑑 [142]. This improvement arises because each walker need not visit every corner

individually; instead, the exchange mechanism allows information about distant regions to prop-

agate through the ensemble. The required number of replicas is determined by ensuring sufficient

overlap between the radial distributions sampled by neighboring walker.

5.2.3 Estimating a normalizing constant: MBAR

While parallel tempering generates samples from each biased distribution, these samples only

reflect relative probabilities. The volume, i.e. the absolute normalization constant at 𝑘 = 0 (the

partition function 𝑍𝑘 =
∫
𝑒−𝑢𝑘 (𝑿 )𝑑𝑿 , evaluated at 𝑘 = 0), remains unknown. To obtain it, we

estimate the free energy difference Δ𝑓 = − ln(𝑍0/𝑍ref) between the unbiased state and a reference

state with a known normalization constant.

Given samples from multiple replicas with different biasing potentials, we need a method to

estimate the free energy difference between them—and ultimately, the volume of the unbiased

basin. The Multistate Bennett Acceptance Ratio (MBAR) [98] provides a principled solution by

finding the maximum likelihood estimate for the free energies 𝑓𝑖 = − ln𝑍𝑖 of each state. The
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resulting estimator is:

𝑓𝑖 = − ln
𝐾∑︁
𝑗=1

𝑁 𝑗∑︁
𝑛=1

𝑒−𝑢𝑖 (𝑿 𝑗𝑛)∑𝐾
ℓ=1 𝑁ℓ 𝑒

𝑓ℓ−𝑢ℓ (𝑿 𝑗𝑛)
(5.6)

where 𝑢𝑖 (𝑿 ) is the reduced potential for state 𝑖 , and the sums run over all 𝐾 states and all sam-

ples 𝑿 𝑗𝑛 collected from each state. This set of coupled nonlinear equations must be solved self-

consistently; every sample from every state contributes to each free energy estimate, optimally

combining all available information. MBAR is a maximum likelihood estimator, therefore it has

special properties amongst the class of estimators that estimate free-energy differences with the

same assumptions [147].

First, it is consistent: as the number of samples grows, the estimates converge to the true

free energy differences. Second, it is asymptotically normal: the distribution of estimates be-

comes Gaussian in the large-sample limit, which allows straightforward uncertainty quantifi-

cation. Third, it is asymptotically efficient: among all unbiased estimators, MLEs achieve the

smallest possible variance (the Cramér-Rao lower bound) as sample size increases.

In practice, we use the pymbar library [98] to solve these equations iteratively.

5.3 Procedure

We start by randomly sampling a configuration in phase space and map it to it’s corresponding

inherent structure via solving steepest descent/using a proxy optimizer. we then perform the

following procedure

5.3.1 Finding 𝑘max

Before running parallel tempering, we must determine the maximum spring constant 𝑘max that

keeps the most tightly confined walker within the basin. The goal is to find the largest 𝑘 such

that a configuration sampled from the harmonic bias still belongs to the original basin with high
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probability—typically 90%. A walker confined by a stiffer spring explores a smaller region around

the minimum, making it easier to remain in the basin; one with a weaker spring samples larger

displacements and is more likely to escape.

The algorithm proceeds as follows:

1. Begin with an initial guess for the spring constant 𝑘 .

2. Sample a configuration by displacing all particles from the minimum according to a Gaus-

sian distribution whose width is set by the spring constant (tighter springs yield smaller

displacements).

3. Quench the displaced configuration to its nearest energy minimum and check whether it

matches the original packing.

4. Repeat for many samples and compute the acceptance fraction—the proportion that remain

in the basin.

5. Adjust 𝑘 based on the observed acceptance:

• If the acceptance exceeds the target, decrease 𝑘 to allow larger displacements.

• If the acceptance falls below the target, increase 𝑘 to further constrain the walker.

6. Iterate until the acceptance converges to the target value.

The resulting 𝑘max defines the tightest confinement used in the parallel tempering simulation

and sets the scale for the innermost replica’s sampling region.

5.3.2 Implementation details of parallel tempering

The parallel tempering simulation is organized around a coordinator-worker architecture, de-

veloped by Klicpera [148]. A single coordinator process manages the simulation, while multiple
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worker processes run Monte Carlo simulations in parallel. This allows replicas to be simulated

concurrently, with the coordinator handling exchanges and convergence testing.

The procedure operates as follows:

1. Initialize replicas. Create a set of replicas spanning a range of spring constants: positive

values from 𝑘max down to 𝑘 = 0 (the free walker), plus a subset of negative values that push

the walker outward to sample the basin periphery.

2. Distribute work. The coordinator assigns each replica to an available worker. Workers

that finish early receive new replicas, balancing the computational load dynamically.

3. Run Monte Carlo. Each worker evolves its replica for a fixed number of steps under the

assigned harmonic bias. At each step, the squared displacement from the minimum,

𝑟 2(𝑡) =
��𝑿 (𝑡) − 𝑿𝛼

𝐼𝑆

��2, (5.7)

is recorded, building up a time series {𝑟 2(𝑡)} for each replica.

4. Collect results. Workers return their updated configurations and squared-displacement

time series to the coordinator.

5. Attempt exchanges. The coordinator proposes swaps between neighboring replicas ac-

cording to the acceptance criterion in Eq. (5.5). Exchanges alternate between even-indexed

pairs (replicas 0–1, 2–3, etc.) and odd-indexed pairs (replicas 1–2, 3–4, etc.) on successive

iterations as described in 5.2.2.

6. Repeat until convergence. Steps 2–5 continue until the 𝑟 2 time series has equilibrated

and accumulated enough uncorrelated samples. For replica 𝑖 with time series {𝑟 2
𝑖 (𝑡)} hav-

ing post-equilibration mean 𝜇𝑖 = ⟨𝑟 2
𝑖 ⟩, variance 𝜎2

𝑖 , and integrated autocorrelation time 𝜏𝑖
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(computed via FFT), the correlated standard error after 𝑛 samples is [149]

SE𝑖 =

√︄
𝜎2
𝑖
(1 + 2𝜏𝑖)
𝑛

. (5.8)

Convergence is achieved when the relative standard error SE𝑖/𝜇𝑖 falls below a threshold 𝜖

for all replicas. If not yet converged, the simulation is extended adaptively: the required

sample size for replica 𝑖 is estimated as [148]

𝑀𝑖 =
𝜎2
𝑖 (1 + 2𝜏𝑖)
(𝜇𝑖𝜖)2

, (5.9)

and additional PT iterations are scheduled to collect max𝑖 (𝑀𝑖)−𝑛more samples. In practice

we also have a maximum number of iterations

The dynamic loading system accounts for the disparity in basin mapping times—fast for high 𝑘 ,

slow for low 𝑘—leading to significantly improved run times compared to running each replica on

it’s own 𝐶𝑃𝑈 .

5.3.3 Inner sphere sampling

The MBAR estimator described in Section 5.2.3 provides free energy differences between states,

but to compute the absolute basin volume we need a reference state with a known normaliza-

tion. The parallel tempering simulation samples configurations at various spring constants 𝑘 , but

does not directly probe the innermost region very close to the minimum where the geometry is

simplest. The inner sphere sampling step provides this missing reference.

The idea is to sample uniformly within a small ball of radius 𝑟min centered at the minimum

𝑿𝛼
𝐼𝑆
:

Smin = {𝑿 :
��𝑿 − 𝑿𝛼

𝐼𝑆

�� < 𝑟min}. (5.10)
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If this ball were entirely contained within the basin, its volume would simply be the volume of

an 𝑁 -dimensional ball,

𝑉𝑁 (𝑟 ) =
𝜋𝑁 /2

Γ(𝑁 /2 + 1) 𝑟
𝑁 . (5.11)

In practice, even for small 𝑟min, some configurations within the ball may minimize to a different

inherent structure. We therefore measure the acceptance fraction 𝑝acc—the probability that a uni-

formly sampled configuration within the ball belongs to basin 𝛼—by drawing many samples and

checking basin membership for each. The effective reference volume is then

𝑉ref =𝑉𝑁 (𝑟min) · 𝑝acc. (5.12)

The radius 𝑟min is chosen to be small enough that 𝑝acc remains high (typically above 50%),

ensuring a reliable reference, while still providing overlap with the innermost parallel tempering

replica. In practice, 𝑟min is determined from the mean squared displacement observed at the high-

est spring constant in the parallel tempering simulation: given ⟨𝑟 2⟩𝑘max , we set 𝑟min ∝
√︁
⟨𝑟 2⟩𝑘max .

In addition to measuring the acceptance fraction, we also record a time series of displace-

ments 𝑟 (𝑡) =
��𝑿 (𝑡) − 𝑿𝛼

𝐼𝑆

�� from configurations sampled with a Gaussian distribution of width

𝜎 ∼ 𝑟min. This time series is included in the MBAR analysis as an additional state, providing

crucial information for connecting the reference volume to the unbiased distribution.

5.3.4 Estimating volume

With the parallel tempering time series and inner sphere data in hand, we now describe how to

compute the basin volume. The key insight is that the negative logarithm of the basin volume,

𝐹𝛼 ≡ − ln 𝑣𝛼 , (5.13)
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can be interpreted as a free energy: it is the negative log of a partition function (the integral over

the basin). This interpration allows us to put it in context of free-energy techniques developed

in computational chemistry.

The inner sphere provides a reference free energy based on the measured acceptance fraction:

𝐹min = − ln𝑉𝑁 (𝑟min) − ln𝑝acc, (5.14)

where 𝑉𝑁 (𝑟min) is the volume of the reference ball (Eq. 5.11) and 𝑝acc is the acceptance fraction.

This anchors the free energy scale at a known absolute value corresponding to the effective vol-

ume 𝑉ref =𝑉𝑁 (𝑟min) · 𝑝acc of the innermost region.

To connect this reference to the full basin, wemust estimate the free energy differenceΔ𝑓inner→𝑘=0

between the inner sphere state and the unbiased (𝑘 = 0) state. Recall that each state 𝑖 in our um-

brella sampling scheme has a partition function𝑍𝑖 =
∫
B𝛼 𝑒

−𝑢𝑖 (𝑿 )𝑑𝑿 and corresponding free energy

𝑓𝑖 = − ln𝑍𝑖 . The free energy difference

Δ𝑓inner→𝑘=0 = 𝑓𝑘=0 − 𝑓inner (5.15)

quantifies how the accessible phase space volume changes as we remove the biasing potential.

The MBAR estimator (Section 5.2.3) provides the maximum likelihood estimate of this quantity

by optimally combining all samples from the parallel tempering replicas and the inner sphere.

When constructing the reduced potentials for this analysis, the inner sphere state requires

special treatment:

𝑢inner(𝑟 ) = (𝑁 − 1) ln 𝑟 + 𝑘inner
2

𝑟 2, (5.16)

where 𝑟 =
��𝑿 − 𝑿𝛼

𝐼𝑆

�� and 𝑘inner is the effective spring constant corresponding to the Gaussian

sampling width. The first term is the log density of states for an 𝑁 -ball: for uniform density

in configuration space, the radial density of states scales as 𝑔(𝑟 ) ∝ 𝑟𝑁−1 (the surface area of an
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(𝑁 − 1)-sphere), so ln𝑔(𝑟 ) = (𝑁 − 1) ln 𝑟 . This accounts for the greater entropy associated with

regions further from the origin, and must be included to correctly reweight the inner sphere

samples alongside the parallel tempering data. The parallel tempering replicas use the standard

harmonic form 𝑢𝑖 (𝑟 ) = 𝑘𝑖
2 𝑟

2.

The negative log basin volume is then estimated as

𝐹𝛼 = 𝐹min − Δ̂𝑓 inner→𝑘=0, (5.17)

where the hat denotes that Δ̂𝑓 is the MBAR estimate of the true free energy difference. Hence,

the estimate the volume by 𝑣𝛼 = 𝑒−𝐹𝛼 .

5.3.5 Computing the radial density of states

Beyond the total volume, the parallel tempering data also yield the radial density of states 𝜉 (𝑟 )—

the density of configurations at distance 𝑟 =
��𝑿 − 𝑿𝛼

𝐼𝑆

�� from the minimum. This quantity provides

detailed information about basin geometry and satisfies

𝑣𝛼 =

∫ ∞

0
𝜉 (𝑟 ) 𝑑𝑟 . (5.18)

For comparison, an 𝑁 -dimensional ball of radius 𝑅 has 𝜉 (𝑟 ) = 𝑆𝑁−1𝑟
𝑁−1 for 𝑟 < 𝑅 and zero

otherwise, where 𝑆𝑁−1 is the surface area of the unit (𝑁 − 1)-sphere.

Each replica 𝑘 samples configurations from the biased distribution

𝑝𝑘 (𝑟 ) =
𝜉 (𝑟 ) 𝑒−𝑢𝑘 (𝑟 )

𝑍𝑘
, (5.19)

where 𝑢𝑘 (𝑟 ) is the reduced biasing potential and 𝑍𝑘 =
∫
𝜉 (𝑟 ) 𝑒−𝑢𝑘 (𝑟 ) 𝑑𝑟 is the partition function.

For the parallel tempering replicas with harmonic bias, 𝑢𝑘 (𝑟 ) = 𝑘
2𝑟

2. For the inner sphere state,

which samples uniformly from a Gaussian distribution in configuration space, the effective re-

90



duced potential is

𝑢inner(𝑟 ) = (𝑁 − 1) ln 𝑟 + 𝑘inner
2

𝑟 2, (5.20)

where the logarithmic term accounts for the radial density of states of an 𝑁 -ball: uniform sam-

pling in configuration space yields a radial distribution proportional to 𝑟𝑁−1.

Taking the logarithm of Eq. (5.19) and rearranging gives

ln 𝜉 (𝑟 ) = ln𝑝𝑘 (𝑟 ) + 𝑢𝑘 (𝑟 ) + 𝑓𝑘 , (5.21)

where 𝑓𝑘 = − ln𝑍𝑘 is the dimensionless free energy of state 𝑘 . This expression shows that the un-

biased density of states can be recovered from the biased distribution by adding back the biasing

potential and an overall normalization constant.

To estimate 𝜉 (𝑟 ) from the simulation data, we bin the time series {𝑟 (𝑡)} from each replica

into histograms. Let 𝑛𝑘 (𝑟 ) denote the (normalized) histogram count for replica 𝑘 at radial bin 𝑟 ,

which provides an estimate 𝑝𝑘 (𝑟 ) ≈ 𝑝𝑘 (𝑟 ). The free energy offsets 𝑓𝑘 are obtained from MBAR

(Section 5.2.3). Each replica thus provides an estimate of ln 𝜉 (𝑟 ) via Eq. (5.21), but only at radii

where it has samples.

To combine the estimates from all replicas, we take a weighted average using the histogram

counts as weights:

ln 𝜉 (𝑟 ) =

∑𝐾
𝑘=1 𝑛𝑘 (𝑟 )

[
ln𝑛𝑘 (𝑟 ) + 𝑢𝑘 (𝑟 ) + 𝑓𝑘

]
∑𝐾
𝑘=1 𝑛𝑘 (𝑟 )

. (5.22)

This estimator gives more weight to replicas that sample a given radial bin more frequently, and

naturally handles regions where only a subset of replicas contribute. The denominator
∑
𝑘 𝑛𝑘 (𝑟 )

represents the total number of visits to bin 𝑟 across all replicas.

To characterize basin shape, we compare 𝜉 (𝑟 ) to the density of states of a hyperball in the

same dimension, which scales as 𝑟𝑁−1. Plotting log
(
𝜉 (𝑟 )/𝑟𝑁−1) yields a constant for a hyperball;

deviations from constancy reveal how the basin geometry differs from spherical. As shown in
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Chapter 6, this quantity decreases with 𝑟 in real basins, reflecting the narrowing of “tentacles”

far from the minimum.

5.4 Validation on hypercubes

To validate the volume estimation procedure, we apply it to a potential with known basin geom-

etry:

𝑈 (𝒙) =
(
1 + 𝑑 +

𝑑∑︁
𝑖=1

cos(2𝜋𝑥𝑖)
)1/2

, (5.23)

The cosine terms have period 1 in each coordinate, so the potential has a periodic structure that

tiles configuration space into unit hypercubes. Each minimum lies at an integer lattice point

𝒙∗ ∈ Z𝑑 , and its basin of attraction is the surrounding hypercube [𝑥∗𝑖 − 1
2 , 𝑥
∗
𝑖 + 1

2 ]
𝑑 . Consequently,

every basin has volume 𝑣 = 1, and the negative log volume should vanish: 𝐹0 = − ln(1) = 0.

Deviation from zero indicates systematic bias in the estimationmethod. We note that in this thesis

we’re interested in basin volumes, hence we create this test potential to test basin assigment.

For results on how the free-energy volume calculation performs purely on hypercubes, we refer

readers to Casiulis et al [142] showing correctness upto 𝑑 = 1000.

We test CVODE, FIRE, and L-BFGS across dimensions ranging from 𝑑 = 8 to 𝑑 = 512. For each

dimension and minimizer, we run the procedure on hypercubes with initial conditions sampled

uniformly at random. Figure 5.2 shows the results.

CVODE and FIRE produce volume estimates consistent with the true value (𝐹0 = 0) across all

dimensions tested. L-BFGS, however, begins to deviate from zero at high dimensions, suggesting

that it may introduce systematic bias in this regime. We examine how the methods compare on

real basins in the next section.
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Figure 5.2: Validation of the volume estimation method on unit hypercubes. The estimated free energy
⟨𝐹0⟩, which should equal zero for a unit hypercube, is plotted against dimension 𝑑 for three minimizers:
CVODE (blue), FIRE (orange), and L-BFGS (green). Error bars represent the standard error (𝑛 = 10, except
𝑛 = 3 for 𝑑 = 512). CVODE and FIRE remain consistent with zero across all dimensions, while L-BFGS
begins to deviate at high 𝑑 .
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6 | Volume and Radial Structure of

Basins

Somehow everything just fits perfectly together, and it’s sort of a miracle.

— Henry Cohn, on 𝐸8 and the Leech lattice

6.1 Introduction

As discussed in Section 1.1.2, basin volumes provide a natural measure of global stability in dy-

namical systems: basins occupying larger fractions of phase space are more likely to be reached

from random initial conditions. In the dynamical systems community, naive Monte Carlo sam-

pling suffices when basins occupy significant volume fractions but this approach is limited to

systems with either low dimensional state spaces or where the basins of interest occupy a signif-

icant fraction of phase space. For jammed sphere packings, the astronomical number of minima

renders individual basins vanishingly small, making naive sampling hopeless. Frenkel and col-

laborators [16–18, 30] therefore developed the MCMC-based approach described in the previous

chapter, which constrains random walkers within a single basin and reconstructs the volume

through free energy estimation.

This method has a critical dependence on accurate basin identification: checking whether a
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configuration belongs to a given basin requiresminimization at everyMCMC step—approximately

106 minimizations per basin. In Chapter 3, we demonstrated that commonly used optimizers ex-

hibit exponentially decaying accuracywith system size, failing catastrophically for systems larger

than a few dozen particles. In Chapter 4, we showed that these errors produce qualitative arti-

facts in measured basin geometry, with apparent fractality arising from optimizer misattribution

rather than intrinsic landscape properties. This raises an immediate concern: if optimizers can-

not reliably identify which basin a point belongs to, how trustworthy are the volumes calculated

using them?

This chapter addresses that question directly. We apply the parallel tempering method to

measure basin volumes using both CVODE and optimizer proxies, revealing systematic biases

that grow with system size. By examining the radial density of states within basins, we trace

these discrepancies to their origin: optimizer accuracy depends strongly on distance from the

minimum, with errors accumulating precisely in the “tentacle” regions where most of the vol-

ume resides in high dimensions. These results demonstrate that accurate volume measurements

require solving the steepest descent ODE, and provide new insight into the structure of basins

far from their minima.

6.2 Basin volumes

We now apply the parallel tempering method described in the previous chapter to measure basin

volumes using different minimizers. Recall that the procedure requires checking basin mem-

bership at each MCMC step—approximately 106 minimizations per basin [31, 142]. Given the

accuracy differences observed in Figure 3.4, we expect this method to be significantly affected by

optimizer inaccuracy. We test this hypothesis at𝜙 = 0.9 across system sizes that remain amenable

to CVODE.

The results for the intensive free energy 𝐹0/𝑁 = − ln(𝑣𝛼 )/𝑁 are shown in Figure 6.1. While

95



20 50 100

2.0

2.5

3.0

3.5

4.0

N

F
0
N

CVODE
FIRE

L BFGS

Figure 6.1: Free energies. Intensive free energies 𝐹0/𝑁 across methods, against 𝑁 , each averaged over
the same 5 basins for each 𝑁 .

FIRE and L-BFGS yield near-indistinguishable values, there is a systematic bias between CVODE

and the approximate optimizers. Worse, this bias grows with system size as FIRE and L-BFGS

become increasingly inaccurate. Notably, the volumes measured by optimizers are larger than

the true volumes—a counter-intuitive result we explain below.

6.3 Density of States

The volume overestimate by optimizers can be understood through the radial density of states

(DOS), computed from the parallel tempering samples as described in Section 5.3.5. Figure 6.2

compares the DOS for example basins using CVODE and FIRE. We plot the DOS against the
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Figure 6.2: Density of states. Example densities of states (DOS) for one basin per 𝑁 , comparing CVODE
(left) and FIRE (right).

rescaled radial distance 𝑟/
√︁
(𝑁 − 1)𝑑 , which keeps the length of a long diagonal of a unit cube

constant across dimensions. The CVODE DOS are all maximal around 1, while the FIRE distri-

butions systematically shift to higher values—FIRE finds samples lying further away from the

minimum.

6.4 Accuracy vs Distance

The explanation for the shifted DOS lies in how optimizer accuracy depends on distance from the

minimum. Figure 6.3 shows the accuracy of FIRE on samples from the same basins as Figure 6.2,
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Figure 6.3: Accuracy vs distance. Averaged accuracy over O(105) FIRE samples used, against their
distance to the minimum, in semi-log scale. Dashed lines are exponential fits 𝑦 = 𝐶 exp(−𝜆𝑥) of each
curve. Inset: best decay rate 𝜆 against 𝑁 in log-log, with a dashed power-law 𝜆 ∼ 𝑁 0.6.

plotted against rescaled radial distance. The accuracy plummets after 𝑟/
√︁
(𝑁 − 1)𝑑 ≈ 0.7, with

an exponential decay that becomes steeper with increasing dimensionality (inset).

This reveals the mechanism: FIRE wrongly tags points outside the basin as belonging to

it, likely because inertia facilitates ridge crossing. In high dimensions, a slightly larger spher-

ical shell contributes an enormous volume, so these erroneous points lead to systematic volume

overestimates. This provides quantitative evidence that optimizers bias the sampling of minima,

consistent with the biased estimates of energies and 𝜙 𝐽 discussed in Chapter 3.
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6.5 Basin Shape Comparison

To connect accuracy decay to basin geometry, Figure 6.4 shows the CVODE DOS divided by that

of a hyperball in 𝑁 (𝑑 − 1) dimensions [30, 142]. This ratio measures how much sparser than a

ball the basin becomes as 𝑟 grows—where it drops, the basin narrows into “tentacles.”

The accuracy of FIRE (Figure 6.3) begins falling at distances slightly larger than where this

ratio starts dropping, meaning inaccuracy sets in precisely when entering the tentacles 1. This

also explains why the disagreement between CVODE and optimizers grows with 𝑁 : in higher

dimensions, the volume of the largest inscribed ball becomes vanishingly small [142], so most of

the basin lies in the tentacles where optimizers fail.

These discrepancies call into question the scope of results on basin geometry obtained with

FIRE [30, 31, 123].

6.6 Half-Survival Radius

The density of states and accuracy measurements presented above characterize how basins devi-

ate from hyperballs and where optimizers fail. However, they do not directly measure the local

width of the basin at different radial distances. The half-survival radius 𝑅1/2 provides precisely

this information: it quantifies how far one can perturb a configuration before it escapes to a

different minimum with 50% probability.

6.6.1 Methods

Wemeasure 𝑅1/2 using a procedure that extends the survival probability method described in Sec-

tion 4.4.1. The key difference is that we sample perturbations from points distributed throughout
1The decay exponents in Figure 6.4 (see inset) are much larger than those in Figure 6.3. Thus, interpreting

Figure 6.4 as the success rate of naïve Monte Carlo on a sphere [142], the FIRE basin, while inaccurate, remains
much more correlated with the true basin than uniform sampling.

99



0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
100

80

60

40

20

0

r d N 1

lo
g 1

0
C
V
O
D
E
D
O
S
D
O
S b

al
l

N 128
64
32
16

20 50 100

50

100

200

N

Figure 6.4: Basin shape. log10 of the ratio between the CVODE DOS and that of a hyperball in 𝑁 (𝑑 − 1)
dimensions. Dashed lines are exponential fits. Inset: decay rate 𝜇 against 𝑁 in log-log, with a dashed
power-law 𝜇 ∼ 𝑁 0.9.
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the basin interior rather than from a single reference point, allowing us to track how basin width

varies with distance from the minimum.

Binning parallel tempering samples by distance. Starting from the parallel tempering tra-

jectory samples, we compute the radial distance of each sample x from the basin minimum x0:

𝑟 = ∥x − x0∥. (6.1)

Samples are binned by distance into intervals of width Δ𝑟 = 0.1 in configuration space units.

From each bin, we select 10 representative center points for the subsequent sphere sampling.

Survival probability at multiple shell radii. For each center point c at distance 𝑟 from the

minimum, we compute the survival probability 𝑆 (𝑅) at 15 shell radii spanning multiple orders

of magnitude, from 𝑅 ≈ 0.01 to 𝑅 ≈ 2 in configuration space units. For each distance bin, we

average the survival curves across all 10 center points:

𝑆 (𝑅) = 1
10

10∑︁
𝑘=1

𝑆𝑘 (𝑅). (6.2)

Interpolation to find 𝑅1/2. Given the averaged measurements (𝑅 𝑗 , 𝑆 𝑗 ), we find 𝑅1/2 where

𝑆 (𝑅1/2) = 0.5 by linear interpolation in log-probability space. Survival probability typically de-

cays exponentially or stretched-exponentially with radius:

𝑆 (𝑅) ∼ exp
(
−𝜆𝑅𝛽

)
, (6.3)

so in log-probability space the relationship is nearly linear, improving interpolation accuracy. We

build an interpolating function mapping log 𝑆 → 𝑅 and evaluate at log(0.5) ≈ −0.693.
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Figure 6.5: Half-survival radius. Half-survival radius 𝑅1/2 inside a single basin against distance 𝑟 to its
minimum for 𝑁 = 128. Lines indicate proposed fits: exponential (gray) for FIRE and L-BFGS, stretched-
exponential (black) for CVODE.

6.6.2 Results

Results for 𝑁 = 128 particles at packing fraction 𝜙 = 0.9 are shown in Figure 6.5. The mea-

surement involves 10 center points per distance bin, 1000 samples per hypersphere, and 15 shell

radii—approximately 106 total samples per minimization method.

The half-survival radius provides a direct measure of sensitivity to perturbations: smaller 𝑅1/2

means a configuration is more sensitive, requiring only a small displacement to escape the basin

with appreciable probability. In this sense, 1/𝑅1/2 quantifies the local sensitivity at each distance

from the minimum.

The functional form of 𝑅1/2(𝑟 ) differs qualitatively between methods. Optimizers (FIRE and

L-BFGS) yield exponential decays:

𝑅1/2(𝑟 ) ∼ exp(−𝜆𝑟 ), (6.4)
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while CVODE reveals stretched exponential behavior:

𝑅1/2(𝑟 ) ∼ exp
(
−𝜆𝑟 𝛽

)
, 𝛽 < 1. (6.5)

This distinction has geometric significance. For hypercubes, cross-sections perpendicular to a

main diagonal decay exponentially with distance from the center [150]. The optimizer results are

therefore consistent with a hypercube-like basin geometry. However, the stretched exponential

observed with CVODE indicates that real basins have “thicker” tentacles than hypercubes—they

maintain finite width further into their periphery than hypercubic analogies would predict. In

terms of sensitivity, this means configurations in the tentacle regions are less sensitive to pertur-

bations than hypercubic models suggest: they can tolerate larger displacements before escaping

to a different basin.

This finding is consistent with observations that tentacles contribute significantly to basin

volumes at large distances from the minimum in sphere packings [27, 30], Kuramoto models [21,

123], and neural networks [151]. Crucially, this qualitative difference in basin geometry is invis-

ible to optimizer-based measurements, which systematically report the wrong functional form.

6.7 Discussion

The central finding of this chapter is that optimizer choice within the parallel tempering volume

calculation introduces systematic bias. Comparing free energies obtained with CVODE against

those from FIRE and L-BFGS reveals a discrepancy that widens as𝑁 increases. Counterintuitively,

optimizers yield volumes that are too large—the opposite of what one might naively expect from

a method that “misses” the correct minimum.

The resolution lies in understanding where optimizers fail. The radial density of states and

accuracy-versus-distance measurements together paint a clear picture: FIRE maintains reason-
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able accuracy near the minimum but deteriorates rapidly at larger distances. Because high-

dimensional basins concentrate their volume in narrow peripheral regions rather than near the

center, these distant points dominate the integral. When FIRE misassigns an outside point as in-

side, it effectively expands the basin’s apparent reach, and the geometric amplification of volume

with radius does the rest.

Beyond quantifying the bias, the half-survival analysis uncovers a qualitative difference in

inferred basin shape. The functional form of how cross-sectional width shrinks with distance

differs between methods: optimizers produce a simple exponential falloff, while CVODE reveals

a slower stretched-exponential decline. The latter implies that real basins maintain finite width

further into their periphery than hypercubic analogies would predict—a distinction invisible to

optimizer-based measurements.

These findings have direct implications for the literature on basin volumes in jammed pack-

ings. Previous work [16–18, 30, 31, 123] employed optimizers for the basin membership checks

required for volume estimation. In Chapter 4, we showed that qualitative changes in survival

probability emerge near jamming that are seen with optimizers but not when solving the ODE.

Notably, the verification of the Edwards hypothesis in two dimensions [31] relied on measure-

ments extrapolated to the jamming point. It remains to be seen how those conclusions are affected

when solving the steepest descent ODE.

The present calculations also present a new unchartered frontier Xu’s original study included

a steepest-descent verification, but only for 𝑁 = 8 𝑑 = 14; Zhang et al. [21] computed volumes in

Kuramoto systems in 84𝑑 , where the potential is easier to evaluate where some basins span appre-

ciable phase-space fractions with naive methods. The present measurements represent the first

ODE-based volume calculations at the scale of 254 dimensions with basins that occupy negligible

fractions of configuration space.
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7 | Conclusions and Future directions

This thesis has analyzed the geometry and volume of basins of attraction in soft sphere packings.

In doing so, it has demonstrated that commonly used numerical techniques for studying potential

energy landscapes in physics and chemistry produce biased results that affect the conclusions

drawn from them. While most of our measurements were conducted in the overjammed regime

at high packing fraction, in cases where we systematically approached the jamming transition,

we observed that optimizer accuracy degrades (Section 3.6.3), and survival probability results

change both qualitatively and quantitatively (Section 4.4.3). It is therefore critical to re-verify

results in the field that depend on fidelity to steepest descent pathways, particularly as we get

closer to jamming.

7.1 Primary Contributions

The contributions of this thesis fall into three interconnected themes: numerical methodology

for basin identification, the geometric structure of basins, and basin volume measurements.

Numerical methodology. We showed that commonly used optimizers used for energy mini-

mization, FIRE and L-BFGS, produce erroneous basin assignments at an increasing rate as system

size grows, reaching near-complete failure for systems with 𝑁 ≳ 64 particles (Section 3.5). By

moving aways from the false frame of basin identification as a minimization problem, back to an

ODE integration problem, we identified CVODE as a practical solver capable of accurate steepest
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descent integration up to 𝑑𝑁 ∼ 103. These optimizer errors propagate into physical observables,

biasing both the distribution of minimum energies and finite-size estimates of the jamming den-

sity (Section 3.4).

Basin geometry. Optimizer failures produce systematic biases in measured basin geometry

that are both quantitative and qualitative; apparent fractal properties of basins can be attributed to

optimizer errors rather than genuine features of the landscape. Box-counting dimensions of basin

boundaries drop with CVODE (Section 4.3), quantifying the roughness visible in configuration-

space slices. Survival probabilities exhibit stretched-exponential decay with CVODE, indicat-

ing basins with finite length scales, whereas optimizers produce power-law decays that would

incorrectly suggest scale-free structure (Section 4.4.3). Intersection lengths follow log-normal

distributions (Section 4.2.2), further confirming that basins possess well-defined characteristic

scales. We also note that the survival probability method, while employed here primarily to dis-

tinguish between fractal and non-fractal basins, can serve as a direct probe of fractal dimension

(Section 4.4.2). Because it relies on Monte Carlo sampling rather than the systematic boundary

detection of Grebogi et al. [58, 59], its computational cost does not growwith configuration-space

dimension, making it potentially useful for characterizing basin stability in high-dimensional sys-

tems. Geometric conclusions drawn from optimizer-based measurements in previous studies [29,

35, 36] may therefore warrant re-examination.

Basin volumes. We extended volume measurements to 254 dimensions using ODE-based basin

membership checks (Section 6.2), a significant increase over previous ODE-verified calculations

in packings, which reached 14 dimensions [16]. Volume calculations in dynamical systems have

reached 86 dimensions [21], but these relied on naive sampling in regimes where some individual

basins occupy substantial fractions of phase space and the potential is less expensive. A compar-

ison with optimizer-based measurements revealed that optimizers systematically inflate volume

estimates, with the discrepancy widening at larger system sizes. This inflation originates from
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distance-dependent accuracy: optimizers perform adequately near the minimum but fail in the

peripheral “tentacle” regions where high-dimensional volume concentrates (Section 6.4). Mea-

suring how basin cross-sections narrow with radial distance, we found a stretched-exponential

decay, indicating that these tentacles are thicker than those of hypercubes (Section 6.6).

7.2 Where can we go from here

7.2.1 Jamming and glasses

We have shown CVODE used correctly can reliably give inherent structures properly at system

sizes researchers care about. We note the problem of not being able to converge to the correct

inherent structure has been noted[79, 81] although attributed to chaoticity instead of numerical

methodology. We give a tool that is able to do so without issue, so we can be assured of the

correctness of results obtained. Some possible use cases are precise estimates of the jamming

transition, proper calculations of configurational entropy.

7.2.2 Basin volume methodology

The computational cost of accurate basin volume calculations remains substantial: measuring the

volume of a single basin correctly for 𝑁 = 128 particles in 2D required over two weeks using 16

cores. Several avenues for improvement exist.

First, significant advances in parallel temperingmethodology have emerged in recent years [152–

154] that have yet to be applied to basin volume calculations.

Second, our implementation uses standardMetropolis sampling with random-walk proposals,

which suffers from diffusive slowdown: in 𝑑 dimensions, a random walker requires 𝑂 (𝑑2) steps

to traverse the configuration space [155]. We note that our current approach discards the infor-

mation contained in steepest descent trajectories. Each basin membership query integrates an
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ODE from the proposed configuration to its minimum, tracing a path through the basin interior.

This information is discarded because we only retain the binary outcome of whether the config-

uration belongs to the basin. Schemes that exploit this geometric information, perhaps by using

gradient information to guide proposals or by caching trajectory data to inform future queries,

remain unexplored.

7.2.2.1 Caveats

While the free-energymethod to calculate volumes presented in this thesis is powerful, it involved

several moving parts, from optimizing potential evaluations in C++ via template metaprogram-

ming to managing simulations where computing the volume of a single basin can take weeks.

Other approaches should therefore be considered first when applicable. For systems with basins

that dominate phase space, naive Monte Carlo sampling may suffice, as demonstrated for the Ku-

ramoto model [20, 21]. In other cases, analytical solutions are available, for instance, the basins of

the random Lorentz gas [156], the smaller basins of the Kuramoto model [66] and those of certain

high-dimensional axion potentials in string theory [54]. However we note that research is lim-

ited by the tools we have on hand. The specific code we use is extremely specialized to jammed

packings. Making an extensible modular implementation that is not fragile that everybody can

use is critical not only for broader use, but to make it easy for other researchers to contribute

ideas to making volume calculations faster. These could be useful to measure high-dimensional

volumes that can be mapped to a basin of a flow.

7.2.3 Other fields

We note that with basin volumes we have only touched the surface of what is possible to do. We

talk about a few problems in other fields we can potentially tackle with the same approach. We

also note that there is interest in calculating basin volumes in the dynamical systems community

using the methods that we use in this thesis [157]. There is work on calculating volumes in the
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machine learning context to understand generalization, although currently published work does

a naive linear estimate based on Hessian eigenvalues [5]. Although there are many use cases [20,

142] we discuss two directions in detail, particularly in the context of stability.

Ecosystem dynamics In ecology, Lotka–Volterra equations model species interactions through

coupled ordinary differential equations, where the number of species 𝑠 determines the system’s

dimensionality. Analytical results are largely confined to two regimes: small communities (𝑠 ≤

3) [158] where explicit solutions remain tractable, and themean-field limit (𝑆 →∞) [74]. Between

these extremes lies the a more realistic regime of 102–103 [49, 159] species, where numerical ap-

proachesmay be useful. Basin volumemethods could be useful to characterize ecosystem stability

in this intermediate regime and understand how stability correlates with equilibrum properties

such as species diversity. Notably, Lotka–Volterra dynamics with symmetric competitive inter-

actions and no noise maps directly onto gradient descent on a glassy energy landscape [160],

making the methods developed in this thesis directly applicable.

The human heart The normal human heart exhibits two stable attractors [161]: the normal

sinus rhythm and ventricular fibrillation, a lethal arrhythmia that represents the most frequent

cause of sudden death[162]. As Strogatz [20] has noted, characterizing the stability of both

basins and understanding what controls their relative stability would be valuable beyond purely

phenomenological descriptions. Recent advances in modeling the human heart to clinical accu-

racy [163] may make characterizing the stability of these basins tractable.

7.3 Concluding remarks

In summary, I have analyzed the geometry and volumes of basins in soft sphere packings and,

in the process, shown that numerical methods commonly used since the 1980s to study potential

energy landscapes can lead to misleading results for soft sphere packings. There are two broad
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goals this thesis aims to achieve beyond presenting results. First, I believe Chapter 2 is critical

to understand before commenting on landscape properties from optimization dynamics; the in-

tended audience is researchers who study potential energy landscapes in physics and chemistry.

Second, while I tried to explicitly motivate the tools I use in this thesis through the idea of global

stability in dynamical systems, the most I have done in this particular context is introduce two

measures and illustrate where the assumed chaoticity of the energy landscape of glasses comes

from in Chapter 4 and show how correct basin volumes can be calculated at large 𝑑 in Chapter 6.

There are many different measures introduced in the context of the global stability/resilience of

an attractor, and a general broadly applicable theory of stability is still lacking [164]. Whether

the stability of a basin per se can be connected to statistical mechanical quantities of interest is

intriguing. I will throw that speculation up in the air. There is much to be explored, and fun to

be had.
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A | Convergence Criterion

Throughout this study, a convergence criterion is needed to decide whether an optimizer has run

for sufficiently long that it has approached its infinite-time attractor. Far from jamming (here, em-

pirically, for packing fractions 𝜙 ≳ 0.86), the Hessian eigenvalues are relatively large throughout

the landscape, so that we use a simple gradient-based convergence criterion: we end ODE solving

and optimizations when ∥g∥ < 10−10. However, as the system gets closer to jamming, the Hessian

eigenvalues may become small, as the energy landscape flattens. As a result, it is possible to have

very small forces on particles far from the minimum, so that a purely gradient-based criterion

can trigger premature termination of the minimization. To circumvent this issue, we employ a

Newton-step-based convergence criterion that uses a second-order estimate of the distance to the

minimum,

𝛿Xmin ≈
(
𝑯 (𝑿 ) + 𝜆(𝑿 ) 𝑰

)−1
g(𝑿 ), (A.1)

where g is the gradient, 𝑯 is the Hessian, 𝑰 is the identity matrix, and 𝜆 is chosen to ensure that

𝐻 + 𝜆𝐼 remains well-conditioned. In practice, 𝜆 = max
(
2|𝜆min |, 𝛾 𝜆avg

)
, where 𝜆min and 𝜆avg are

the minimum and average Hessian eigenvalues at 𝑿 , respectively, and 𝛾 = 0.1. We consider the

dynamics converged when

∥𝛿Xmin∥ < 10−5. (A.2)

This threshold is three orders ofmagnitude smaller than themaximal distance between non rattler

particles used to declare two minima as different, 10−2. The reason for using a smaller value is
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that Newton steps are only a heuristic and may lower accuracy if one does not make its range

smaller than every other scale of the landscape near minima. We check that this value does not

introduce errors compared to a very small gradient criterion in the landscape of Hertzian disks,

but comes at a lower computational cost.
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B | Minima Matching Procedure

It is crucial to be able to accurately determine whether two points obtained as large-time limits of

numerical dynamics map to one and the same minimum of the energy landscape. In the context

of jammed packings, this procedure is complicated by two factors: (i) the presence of rattlers—

particles that canmove over a finite-measure set of positions without changing the overall energy

of the system—and (ii) the translational invariance of the system under periodic boundary con-

ditions. We address these complications by first identifying all rattlers, then comparing only the

positions of non-rattler (backbone) particles after accounting for translational symmetry.

B.1 Rattler Identification

A rattler is a particle that is not mechanically constrained by its neighbors and can therefore

move continuously without changing the energy of the packing. Because rattler positions are

not uniquely determined by the minimum, their coordinates must be excluded when comparing

two configurations.

B.1.1 Geometric Criterion

A particle 𝑖 is mechanically constrained (not a rattler) if and only if it satisfies two conditions:

1. It has at least 𝑧min = 3 contacts with other non-rattler particles.

2. Its center is contained within the convex hull of its contact vectors.
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The first condition ensures that particle 𝑖 has enough constraints to potentially be fixed in

place. The second condition ensures that the constraints actually prevent motion: a particle with

three or more contacts can still be a rattler if all contacts lie on one side, allowing it to roll away

from them.

To formalize the second condition, letN𝑖 denote the set of particles in contact with particle 𝑖 .

For each 𝑗 ∈ N𝑖 , define the contact vector

r𝑖 𝑗 = x 𝑗 − x𝑖, (B.1)

pointing from particle 𝑖 toward its neighbor 𝑗 . Particle 𝑖 is mechanically constrained if and only

if the origin lies within the convex hull of these contact vectors:

0 ∈ ConvexHull
(
{r𝑖 𝑗 } 𝑗∈N𝑖

)
. (B.2)

Geometrically, this means that the particle cannot move in any direction without approaching at

least one of its neighbors, and is therefore trapped.

B.1.2 Convex Hull Test in Two Dimensions

To test whether the origin lies inside the convex hull of a set of 2D vectors, we use a winding

algorithm:

1. Sort the contact vectors {r𝑖 𝑗 } by polar angle 𝜃𝑖 𝑗 = arctan
(
𝑟𝑖 𝑗,𝑦/𝑟𝑖 𝑗,𝑥

)
.

2. Traverse the sorted vertices counter-clockwise.

3. For each pair of consecutive vertices r𝑖 𝑗 and r𝑖𝑘 (where𝑘 follows 𝑗 in the sorted order), check

whether the origin lies to the left of the directed edge from r𝑖 𝑗 to r𝑖𝑘 . This is determined by
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the sign of the cross product:

r𝑖 𝑗 × r𝑖𝑘 = 𝑟𝑖 𝑗,𝑥 𝑟𝑖𝑘,𝑦 − 𝑟𝑖𝑘,𝑥 𝑟𝑖 𝑗,𝑦 . (B.3)

4. The origin is inside the convex hull if and only if it lies to the left of (or on) every edge, i.e.,

if the cross product is non-negative for all consecutive pairs.

B.1.3 Iterative Identification

The identification of rattlers must be performed iteratively because removing one rattler can

cause previously stable particles to become rattlers themselves. The algorithm proceeds as fol-

lows:

1. Compute the neighbor list for each particle, identifying all pairs (𝑖, 𝑗) that are in contact.

2. Initialize all particles as potentially stable.

3. Iterate until no changes occur:

(a) For each particle 𝑖 still marked as stable:

• If particle 𝑖 has fewer than 3 contacts with other stable particles, mark it as a

rattler.

• Otherwise, if the origin does not lie within the convex hull of its contact vectors,

mark it as a rattler.

(b) If particle 𝑖 is newly marked as a rattler, remove it from the neighbor lists of all its

former contacts and add those contacts to a queue to be rechecked.

4. Return the final classification of each particle as either rattler or backbone.
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B.1.4 Jamming Stability Check

After identifying all rattlers, we verify that the remaining backbone forms a mechanically stable

structure. For a 2D packing to be jammed, the number of contacts 𝑁𝑐 among backbone particles

must satisfy the isostatic condition [109]:

𝑁𝑐 ≥ 2(𝑁backbone − 1) + 1 = 2𝑁backbone − 1, (B.4)

where 𝑁backbone is the number of non-rattler particles. This condition ensures that there are

enough constraints to fix all degrees of freedom (minus overall translations). If this condition is

not satisfied, the configuration is classified as a fluid state rather than a jammed packing.

B.2 Structure Comparison

Given two configurations that have both been identified as jammed (not fluid), wemust determine

whether they represent the same minimum. This comparison must account for both the presence

of rattlers (whose positions are arbitrary) and translational invariance under periodic boundary

conditions.

B.2.1 Pre-checks

Before performing a detailed coordinate comparison, we apply two quick checks:

1. If the two configurations have different numbers of rattlers, they correspond to different

minima.

2. If either configuration fails the jamming stability criterion, it is classified as fluid and not

compared further.
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B.2.2 Translational Alignment

Due to translational invariance, two configurations representing the same minimum may be

shifted relative to each other. To account for this, we align the configurations by superimpos-

ing a reference particle. Specifically:

1. Select the first non-rattler particle (by index) as the reference particle. Since our system

uses a fixed set of particle radii, particle identity is well-defined.

2. Compute the drift between the reference particle positions:

d = x(𝐵)ref − x
(𝐴)
ref . (B.5)

3. Shift all coordinates of configuration 𝐵:

x̃(𝐵)
𝑖

= x(𝐵)
𝑖
− d. (B.6)

B.2.3 Distance Computation with Periodic Boundaries

After alignment, we compute the distance between corresponding non-rattler particles, account-

ing for periodic boundary conditions. For each non-rattler particle 𝑖 , the displacement vector

is:

𝚫𝑖 =

(
x(𝐴)
𝑖
− x̃(𝐵)

𝑖

)
mod 𝐿, (B.7)

where 𝐿 is the box length. To obtain the minimum-image displacement, we apply:

Δ𝑖,𝛼 ←


Δ𝑖,𝛼 if |Δ𝑖,𝛼 | ≤ 𝐿/2,

Δ𝑖,𝛼 − 𝐿 sign(Δ𝑖,𝛼 ) otherwise,
(B.8)
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for each Cartesian component 𝛼 . The distance for particle 𝑖 is then 𝑑𝑖 = ∥𝚫𝑖 ∥.

B.2.4 Matching Criterion

Two configurations are declared to represent the same minimum if the maximum displacement

across all non-rattler particles is below a threshold:

max
𝑖∈backbone

𝑑𝑖 < 𝑑tol. (B.9)

We use 𝑑tol = 10−2 throughout this work. This threshold is three orders of magnitude larger

than the convergence criterion (see Appendix A), ensuring that numerical noise in the minimiza-

tion does not cause false negatives. In practice, for packing fractions 𝜙 > 0.85, configurations

that match have maximum displacements smaller than 10−4 when using a gradient tolerance of

10−10 in the convergence criterion. Our choice of 𝑑tol is the largest value that does not lead to

appreciable changes in the identified landscape structure at any value of (𝑁,𝜙).
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C | Solver Parameters

C.0.1 Choices of solver parameters

In this section, we provide complete lists of parameter for all solvers used in the main text—

namely, CVODE, FIRE, L-BFGS, and Gradient Descent. Whenever relevant, we also provide a

rationale for these choices.

C.0.1.1 CVODE Parameters

Many adaptive ODE solvers, including CVODE, adjust their step size by imposing an upper bound

on the estimated local error for each step. As noted in Sec. ??, this bound is specified by two

tolerance settings: relative error (rtol) and absolute error (atol). However, constraining this

local error estimate does not guarantee that the global error will adhere to the same bounds,

particularly in systems where small errors can lead to diverging trajectories. To address this

limitation, we set values for tolerances based on an analysis of the accuracy of the mapping

𝑿0 ↦→ 𝑿∞ between random initial points and their corresponding final minima.

To assess this accuracy, one needs a reference (a ground truth). Relying on the fact that

CVODE is an ODE solver, and thus asymptotically converges to the true steepest-descent trajec-

tories at vanishing rtol, we expect minimal error when rtol is small enough that the mapping

remains unchanged over large random sets of points as we decrease rtol. Across all our simula-

tion parameters, this is achieved when rtol is set to 10−14.
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Using this reference, we assess performance at larger tolerances by running CVODE from

approximately 10000 random initial points at each rtol value. We define an accuracy for each

rtol as the fraction of initial points that converge to the same minimum as when rtol = 10−14.

Results are shown in Fig. C.1, where we plot accuracies and computation times against rtol at all

system sizes for which CVODE is considered in the paper. We also report performance based on

whether we switch on an iterative Newton-Krylov scheme [165] provided within CVODE [120,

166] to solve an implicit time-stepping equation instead of using the dense Hessian. For each 𝑁 ,

we highlight the rtol and choice of scheme (iterative or dense) corresponding to the fastest time

with > 98% accuracy at identifying basins accurately. This rtol is the value we use in practice.

We summarize our choices of rtol and scheme for each 𝑁 in Table C.1, where we also give

values for accuracies larger than 95%. Note that the optimal time to attain these accuracies in-

volves switching on the iterative scheme at sizes 𝑁 > 64, which leads to a slight change of trend

of time scalings at the junction 𝑁 = 64.

System Size rtol (acc ⪆ 95) rtol (acc > 98) Iterative
8 10−4 10−7 False
16 10−5 10−7 False
32 10−5 10−7 False
64 10−6 10−7 False
128 10−7 10−8 True
256 10−8 10−9 True
512 10−9 10−10 True
1024 10−10 10−11 True

Table C.1: Tolerances for CVODE. Table of CVODE tolerances we choose. For small systems, while
a higher rtol is optimal for performance, the resulting numerical noise can prevent the gradient from
satisfying the 10−10 convergence threshold close to a minimum. Here iterative means that an iterative
Newton-Krylov scheme is used to solve the Newton’s equation instead of using the dense Hessian.

Also note that, while the matrix structure for the Hessian is sparse, we are not aware of al-

ready available methods that may take advantage of this property, because the sparsity structure

constantly changes as particles start or stop interacting through the minimization process. Fi-

nally, from the values in Tab. C.1, it is interesting to notice that rtol seemingly scales with 𝑁
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Figure C.1: CVODE Accuracy and Time vs Tolerance. For each 𝑁 , we vary rtol and report accuracy
and time, averaged across 104 random initial conditions. Error bars represent Clopper-Pearson confidence
intervals for accuracy and standard error for time. Highlighted points correspond to points used in the
main text, corresponding to > 98% accuracy. The point at the lowest rtol is taken to have accuracy 1.0
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with a power close to 𝑁 −3, that is reminiscent of the timestep scaling with 𝑁 reported in Ref. [80]

– although we emphasize that rtol is not simply a timestep.

C.0.1.2 FIRE, LBFGS, and Gradient Descent parameters

We employ the FIRE and L-BFGS algorithms as implemented in the pele package [167], which

adhere to the recommendations by Ref. [28] to generate accurate basins. To prevent excessively

large step sizes, we cap the maximum step at

Δmax =
𝜇𝑠

10
(C.1)

with 𝜇𝑠 the mean radius of the smaller particles in our bidisperse distribution of radii. In the basin

volume calculations, however, we use a different bound to be consistent with parameter choices

in Ref. [31],

ΔBV
max =

𝑅𝑚𝑖𝑛

4
(C.2)

with𝑅𝑚𝑖𝑛 the smallest radius. In practice, for our choice of distributions, we typically have ΔBV
max ≈

2Δmax.

In our FIRE implementation, we incorporate an additional safeguard: the minimizer is pre-

vented from taking uphill steps by halting and resetting momentum, as in Ref. [31]. The list of

FIRE parameters for the pele implementation used in the paper are given in Tab. C.2. finc deter-

mines the factor to be applied to d𝑡 after Nmin steps, d𝑡 ′ = finc d𝑡 , if the velocity is downhill (i.e

pointing in the direction of the gradient). If we encounter an uphill step, then we reduce d𝑡 by

multiplying it by fdec, d𝑡 ′ = fdec d𝑡 . The maximum timestep,dtmax, is set to 1.

Our L-BFGS parameters are listed in Tab. C.3. Here, M controls howwell the algorithm approx-

imates the Hessian, maxErise determines how much the energy can rise due to the method, (in

this case 0), H0 determines the initial approximate inverse Hessian. We use the default parameter
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Parameter Value
dtstart 0.1
dtmax 1

maxstep 0.5
Nmin 5
finc 1.1
fdec 0.5
fa 0.99

astart 0.1
stepback True

tol 10−10

Table C.2: FIRE algorithm parameters

M = 1 as recommended by Ref. [28].

Parameter Value
tol 10−10

M 1
maxstep 0.1
maxErise 10−10

H0 0.1

Table C.3: L-BFGS algorithm parameters

Finally, in the variant of Gradient Descent adapted from Ref. [79] and described in Sec. ??,

we use the parameters given in Tab. C.4. Here 𝜖 is a bound on the cosine similarity between

successive gradients. d𝑡initial is the starting value of the timestep d𝑡 . If 𝑛backtrack successive steps

satisfy the cosine similarity condition then we modify the timestep d𝑡 = 𝑛backtrackd𝑡 , and if the

condition is violated, we reduce the timestep by doing d𝑡 = d𝑡/𝑛backtrack.

Parameter Value
𝜖 10−2

𝑑𝑡initial 10−5

𝑛backtrack 5

Table C.4: Gradient Descent algorithm parameters
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D | Video Description

We show a video slice of basins of attraction in <link>. attached to the article is obtained as a

succession of 2𝑑 slices of the energy landscape similar to the ones shown in Figs. 1 and 2 of

the main text, for a system of 𝑁 = 16 Hertzian disks at 𝜙 = 0.9. To obtain motion along a

closed trajectory, and thus a looping video, we first define a random 2𝑑 slice in the usual way, see

Sec. 4.2. That slice is defined by a random point𝑿 in configuration space, and two orthogonal unit

vectors 𝒏̂1 and 𝒏̂2. We then sample a third and fourth random direction 𝒆3 and 𝒆4, and use them

to construct the unit vectors 𝒏̂3 and 𝒏̂4 such that 𝒏̂𝑖 · 𝒏̂ 𝑗 = 𝛿𝑖 𝑗 for (𝑖, 𝑗) ∈ {1, 2, 3, 4}2. Using the

two vectors perpendicular to the starting slice, we define a circular trajectory in configuration

space and generate regularly spaced slices along it, such that the successive slices are always

perpendicular to the circle and are spaced by a distance equal to the size of a pixel. We then

match minima across all slices so that any one basin is encoded by the same color across slices.

The resulting collection of slices forms a continuous-looking video that hints at a smooth 3𝑑

structure of basins.
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